# SCM Repository

[matrix] View of /pkg/src/bCrosstab.c
 [matrix] / pkg / src / bCrosstab.c

# View of /pkg/src/bCrosstab.c

Mon Feb 28 18:15:21 2005 UTC (14 years, 11 months ago) by bates
File size: 16486 byte(s)
`Internationalization and localization`
```#include "bCrosstab.h"
/* TODO:
* - Only do a fill-reducing permutation on the first non-nested factor
* - Alternatively: change the algorithm for the fill-reducing
*   permutation to a greedy or a picky algorithm.
* - Rewrite this whole section using the lgTMatrix and lgCMatrix classes.
*   A symbolic manipulation of a sparse matrix is equivalent to
*   manipulating the sparse matrix with logical entries.
* - Create coercion methods for dgCMatrix -> lgCMatrix and vice
*   versa.  Same for dgTMatrix -> lgTMatrix.
*/

/**
* Replace the structure of C by the structure of CL^{-1} where L is the
* unit lower triangular sparse matrix from an LDL' Cholesky decomposition
*
* @param anc number of columns in A
* @param Parent parent array for A
* @param C a dgBCMatrix object to be updated
*/
static void
symbolic_right_unit_sm(int anc, const int Parent[], SEXP C)
{
SEXP cip = GET_SLOT(C, Matrix_iSym),
cpp = GET_SLOT(C, Matrix_pSym);
int *Flag,
*ci = INTEGER(cip),
*cp = INTEGER(cpp),
*ncp,
cnr, cnz = length(cip),
i, j;

if ((length(cpp) - 1) != anc) /* A is square so can compare no of cols */
error(_("No. of rows in A (%d) does not match no. of cols in C (%d)"),
anc, length(cpp) - 1);
i = 1;			/* check for A being the identity */
for (j = 0; j < anc; j++) {
if (Parent[j] >= 0) {
i = 0;
break;
}
}
if (i) return;		/* A is the identity */
cnr = 0;			/* number of rows in C (= max(ci + 1)) */
for (i = 0; i < cnz; i++) {
int ri = ci[i] + 1;
if (cnr < ri) cnr = ri;
}
Flag = Calloc(cnr, int);
ncp = Calloc(anc + 1, int);	/* new column pointers */

ncp[0] = 0;
for (j = 0; j < anc; j++) {
int cj2 = cp[j + 1], kk, kc;
for (i = 0; i < cnr; i++) Flag[i] = 0;
ncp[j+1] = ncp[j] + cj2 - cp[j];
/* positions of current column j of C */
for (kc = cp[j]; kc < cj2; kc++) Flag[ci[kc]] = 1;
/* other positions in column j of product */
for (kk = Parent[j]; kk >= 0; kk = Parent[kk]) {
int kk2 = cp[kk + 1];
for (kc = cp[kk]; kc < kk2; kc++) {
if (!Flag[ci[kc]]) {
ncp[j+1]++;
Flag[ci[kc]] = 1;
}
}
}
}
if (ncp[anc] > cp[anc]) {
int *dims, *nci, nnz = ncp[anc], pos = 0;
double *ncx;

SET_SLOT(C, Matrix_iSym, allocVector(INTSXP,  nnz));
nci = INTEGER(GET_SLOT(C, Matrix_iSym));
dims = INTEGER(getAttrib(GET_SLOT(C, Matrix_xSym), R_DimSymbol));
SET_SLOT(C, Matrix_xSym, alloc3Darray(REALSXP, dims[0], dims[1], nnz));
ncx = REAL(GET_SLOT(C, Matrix_xSym));
for (i = 0; i < nnz; i++) ncx[i] = 1.;
/* As Diana Krall said, "Just do it again." */
for (j = 0; j < anc; j++) {
int cj2 = cp[j + 1], kc, kk;
for (i = 0; i < cnr; i++) Flag[i] = 0;
for (kc = cp[j]; kc < cj2; kc++) Flag[ci[kc]] = 1;
for (kk = Parent[j]; kk >= 0; kk = Parent[kk]) {
int kk2 = cp[kk + 1];
for (kc = cp[kk]; kc < kk2; kc++) Flag[ci[kc]] = 1;
}
for (i = 0; i < cnr; i++) if (Flag[i]) nci[pos++] = i;
}
Memcpy(cp, ncp, anc + 1);
}
Free(Flag); Free(ncp);
}

/**
* Replace the structure of C by the structure of CA^{-T}
*
* @param anc number of column blocks in A
* @param Parent parent array for column blocks of A
* @param C a dgBCMatrix object to be updated
*/
static void
symbolic_right_unit_mm_trans(int anc, const int Parent[], SEXP C)
{
SEXP cip = GET_SLOT(C, Matrix_iSym),
cpp = GET_SLOT(C, Matrix_pSym);
int *ci = INTEGER(cip),
*cp = INTEGER(cpp),
cnz = length(cip),
i, j, nextra = 0;

if ((length(cpp) - 1) != anc)
error(_("No. of cols in A (%d) does not match no. of cols in C (%d)"),
anc, length(cpp) - 1);

i = 1;			/* check for A being the identity */
for (j = 0; j < anc; j++) {
if (Parent[j] >= 0) {
i = 0;
break;
}
}
if (i) return;		/* A is the identity */

for (j = 0; j < anc; j++) { /* bound the number of extra triplets */
int cj2 = cp[j + 1], ka, kc;
for (ka = Parent[j]; ka >= 0; ka = Parent[ka]) {
for (kc = cp[j]; kc < cj2; kc++) {
if (check_csc_index(cp, ci, ci[kc], ka, -1) < 0) nextra++;
}
}
}
if (nextra) {
int cnr, ntot = cnz + nextra, pos;
int *dims = INTEGER(getAttrib(GET_SLOT(C, Matrix_xSym), R_DimSymbol)),
*Ti = Memcpy((int *) Calloc(ntot, int), ci, cnz),
*Tj = expand_column_pointers(anc, cp, Calloc(ntot, int)),
*Ci = Calloc(ntot, int);

for (j = 0, pos = cnz; j < anc; j++) {
int cj2 = cp[j + 1], ka, kc;
for (ka = Parent[j]; ka >= 0; ka = Parent[ka]) {
for (kc = cp[j]; kc < cj2; kc++) {
if (check_csc_index(cp, ci, ci[kc], ka, -1) < 0) {
Tj[pos] = ka;
Ti[pos] = ci[kc];
pos++;
}
}
}
}
for (j = 0, cnr = 0; j < cnz; j++) { /* determine number of rows in C */
int rr = ci[j] + 1;
if (rr > cnr) cnr = rr;
}
triplet_to_col(cnr, anc, ntot, Ti, Tj, (double *) NULL,
INTEGER(cpp), Ci, (double *) NULL);
cnz = cp[anc];
SET_SLOT(C, Matrix_iSym, allocVector(INTSXP, cnz));
SET_SLOT(C, Matrix_xSym, alloc3Darray(REALSXP, dims[0], dims[1], cnz));
Free(Ti); Free(Tj); Free(Ci);
}
}

/**
* Update a block of L in the blocked crosstabulation
*
* @param L pointer to a unit lower triangular list of logical
*          compressed sparse column-oriented matrices
* @param ZZpO pointer to a list of upper triangular diagonal blocks
*          stored as compressed sparse column-oriented matrices.
* @param j index of updating column block
* @param k column index of block to be updated
* @param i row index of block to be updated (j < k <= i)
*/
static void
block_update(SEXP L, SEXP ZZpO, int j, int k, int i)
{
SEXP tb = (i == k) ? VECTOR_ELT(ZZpO, i) : VECTOR_ELT(L, Lind(i, k)),
ib = VECTOR_ELT(L, Lind(i, j)),
kb = VECTOR_ELT(L, Lind(k, j));
SEXP tpp = GET_SLOT(tb, Matrix_pSym),
kpp = GET_SLOT(kb, Matrix_pSym);
int *ti = INTEGER(GET_SLOT(tb, Matrix_iSym)),
*tp = INTEGER(tpp),
*ii = INTEGER(GET_SLOT(ib, Matrix_iSym)),
*ip = INTEGER(GET_SLOT(ib, Matrix_pSym)),
*ki = INTEGER(GET_SLOT(kb, Matrix_iSym)),
*kp = INTEGER(kpp),
tnc = length(tpp) - 1,
knc = length(kpp) - 1;
int jj, extra;

if (k > i || j >= k)
error(_("i,j,k values of %d,%d,%d do not satisfy j < k <= i"),
i, j, k);
/* bound the number of extra elements */
extra = 0;
for (jj = 0; jj < knc; jj++) {
int i1, kk, i2 = ip[jj + 1], k2 = kp[jj + 1];
for (kk = kp[jj]; kk < k2; kk++) {
for (i1 = ip[jj]; i1 < i2; i1++) {
if ((check_csc_index(tp, ti, ii[i1], ki[kk], -1) < 0) &&
/* only update upper triangle of
* diagonal blocks */
((k != i) || (ii[i1] <= ki[kk]))) extra++;
}
}
}
if (!extra) return;
{
int pos, nnz = tp[tnc];
int ntot = nnz + extra, tnr;
int *Ai = Calloc(ntot, int),
*Ti = Calloc(ntot, int),
*Tj = Calloc(ntot, int),
*dims;
double *Ax;

Memcpy(Ti, ti, nnz);	/* make a copy of the row indices */
for (pos = 0, jj = 0; jj < tnc; jj++) {	/* fill in the column indices */
int j2 = tp[jj + 1];
for (; pos < j2; pos++) Tj[pos] = jj;
}
/* add the extra elements */
for (jj = 0; jj < knc; jj++) {
int i1, kk, i2 = ip[jj + 1], k2 = kp[jj + 1];
for (kk = kp[jj]; kk < k2; kk++) {
for (i1 = ip[jj]; i1 < i2; i1++) {
if ((check_csc_index(tp, ti, ii[i1], ki[kk], -1) < 0) &&
((k != i) || (ii[i1] <= ki[kk]))) {
Ti[pos] = ii[i1];
Tj[pos] = ki[kk];
pos++;
}
}
}
}
/* FIXME: Pass nlev instead -  dimensions are nlev[i], nlev[k] */
/* Determine maximum row index in T */
tnr = -1; for (jj = 0; jj < ntot; jj++) if (Ti[jj] > tnr) tnr = Ti[jj];
tnr++;			/* increment by 1 to get number of rows */
triplet_to_col(tnr, tnc, ntot, Ti, Tj, (double *) NULL,
tp, Ai, (double *) NULL);
nnz = tp[tnc];
SET_SLOT(tb, Matrix_iSym, allocVector(INTSXP, nnz));
Memcpy(INTEGER(GET_SLOT(tb, Matrix_iSym)), Ai, nnz);
dims = INTEGER(getAttrib(GET_SLOT(tb, Matrix_xSym), R_DimSymbol));
SET_SLOT(tb, Matrix_xSym,
alloc3Darray(REALSXP, dims[0], dims[1], nnz));
Ax = REAL(GET_SLOT(tb, Matrix_xSym));
for (j = 0; j < nnz; j++) Ax[j] = 1.;
Free(Ai); Free(Ti); Free(Tj);
return;
}
}

/**
* Permute the levels of one of the grouping factors in a bCrosstab object
*
* @param ctab Pointer to a bCrosstab object
* @param nf number of factors in ctab
* @param jj index (0-based) of the factor levels to permute
* @param nlev number of levels of the grouping factors
* @param iperm inverse of the permutation
*/
static void
bCrosstab_permute(SEXP ctab, int nf, int jj,
const int nlev[], const int iperm[])
{
int j;
for (j = 0; j < nf; j++) {
int ind = (j < jj ? Lind(jj, j) : Lind(j, jj)),
ncol = (j < jj ? nlev[j] : nlev[jj]),
nrow = (j < jj ? nlev[jj] : nlev[j]);
SEXP cscb = VECTOR_ELT(ctab, ind),
cscbi = GET_SLOT(cscb, Matrix_iSym);
int *cp = INTEGER(GET_SLOT(cscb, Matrix_pSym)),
nnz = length(cscbi);
double *cx = REAL(GET_SLOT(cscb, Matrix_xSym));
int *mj = expand_column_pointers(ncol, cp, Calloc(nnz, int));
int *mi = Memcpy(Calloc(nnz, int), INTEGER(cscbi), nnz);
double *mx = Memcpy(Calloc(nnz, double), cx, nnz);

if (j <= jj) int_permute(mi, nnz, iperm);
if (j >= jj) int_permute(mj, nnz, iperm);
if (j == jj) make_upper_triangular(mi, mj, nnz);
triplet_to_col(nrow, ncol, nnz, mi, mj, mx, cp, INTEGER(cscbi), cx);
Free(mi); Free(mj); Free(mx);
}
}

static void
symmetric_permute(SEXP A, int nlev, const int iperm[])
{
SEXP AiP = GET_SLOT(A, Matrix_iSym);
int *Ap = INTEGER(GET_SLOT(A, Matrix_pSym)),
nnz = length(AiP);
double *Ax = REAL(GET_SLOT(A, Matrix_xSym));
int *mj = expand_column_pointers(nlev, Ap, Calloc(nnz, int));
int *mi = Memcpy(Calloc(nnz, int), INTEGER(AiP), nnz);
double *mx = Memcpy(Calloc(nnz, double), Ax, nnz);

int_permute(mi, nnz, iperm);
int_permute(mj, nnz, iperm);
make_upper_triangular(mi, mj, nnz);
triplet_to_col(nlev, nlev, nnz, mi, mj, mx, Ap, INTEGER(AiP), Ax);
Free(mi); Free(mj); Free(mx);
}

/**
* Apply a permutation vector to the levels of a factor.
*
* The dest pointer is assumed to point to a copy of the src pointer's
* contents.
*
* @param dest pointer to the destination factor
* @param src pointer to the source factor
* @param perm permutation vector (0-based)
* @param iperm inverse permutation vector (0-based)
*/
static void
factor_levels_permute(SEXP dest, SEXP src, const int perm[],
const int iperm[])
{
SEXP dlev = getAttrib(dest, R_LevelsSymbol),
slev = getAttrib(src, R_LevelsSymbol);
int nlev = length(dlev), flen = length(dest);
int *d = INTEGER(dest), *s = INTEGER(src), i;

if (length(slev) != nlev)
error(_("number of levels in src and dest must match"));
if (length(src) != flen)
error(_("length of src and dest must match"));
for (i = 0; i < nlev; i++)
SET_STRING_ELT(dlev, i, STRING_ELT(slev, perm[i]));
for (i = 0; i < flen; i++)
d[i] = 1 + iperm[s[i]-1];
}

/**
* Create and populate slots in an lmer object from the blocked crosstabulation.
*
* @param val Pointer to an lmer object
*/
void
lmer_populate(SEXP val)
{
SEXP D, L, Parent, ZZpO, flist = GET_SLOT(val, Matrix_flistSym),
perm, Omega, ZtZ = GET_SLOT(val, Matrix_ZtZSym);
SEXP fnms = getAttrib(flist, R_NamesSymbol);
int j, k, nf = length(flist);
int *nc = INTEGER(GET_SLOT(val, Matrix_ncSym)), *Gp,
*nlev = Calloc(nf, int), npairs = (nf * (nf + 1))/2;
char *statnms[] = {"factored", "inverted", ""},
*devnms[] = {"ML", "REML", ""},
*pnms[] = {"index", "block", ""};

/* Allocate fixed-sized slots */
SET_SLOT(val, Matrix_statusSym, Matrix_make_named(LGLSXP, statnms));
SET_SLOT(val, Matrix_devianceSym, Matrix_make_named(REALSXP, devnms));
SET_SLOT(val, Matrix_devCompSym, allocVector(REALSXP, 4));
/* Allocate slots that are lists of length nf */
ZZpO = ALLOC_SLOT(val, Matrix_ZZpOSym, VECSXP, nf);
setAttrib(ZZpO, R_NamesSymbol, duplicate(fnms));
D = ALLOC_SLOT(val, Matrix_DSym, VECSXP, nf);
setAttrib(D, R_NamesSymbol, duplicate(fnms));
perm = ALLOC_SLOT(val, Matrix_permSym, VECSXP, nf);
setAttrib(perm, R_NamesSymbol, duplicate(fnms));
Parent = ALLOC_SLOT(val, Matrix_ParentSym, VECSXP, nf);
setAttrib(Parent, R_NamesSymbol, duplicate(fnms));
Omega = ALLOC_SLOT(val, Matrix_OmegaSym, VECSXP, nf);
setAttrib(Omega, R_NamesSymbol, duplicate(fnms));

/* Allocate peculiar length slots */
SET_SLOT(val, Matrix_LSym, allocVector(VECSXP, npairs));
L = GET_SLOT(val, Matrix_LSym);
SET_SLOT(val, Matrix_GpSym, allocVector(INTSXP, nf + 1));
Gp = INTEGER(GET_SLOT(val, Matrix_GpSym));
Gp[0] = 0;
for (j = 0; j < nf; j++) {
nlev[j] = length(getAttrib(VECTOR_ELT(flist, j), R_LevelsSymbol));
Gp[j + 1] = Gp[j] + nc[j] * nlev[j];
SET_VECTOR_ELT(D, j, alloc3Darray(REALSXP, nc[j], nc[j], nlev[j]));
SET_VECTOR_ELT(Omega, j, allocMatrix(REALSXP, nc[j], nc[j]));
SET_VECTOR_ELT(ZZpO, j, duplicate(VECTOR_ELT(ZtZ, Lind(j, j))));
for (k = j; k < nf; k++)
SET_VECTOR_ELT(L, Lind(k, j),
duplicate(VECTOR_ELT(ZtZ, Lind(k, j))));
}
SET_SLOT(val, Matrix_XtXSym, allocMatrix(REALSXP, nc[nf], nc[nf]));
AZERO(REAL(GET_SLOT(val, Matrix_XtXSym)), nc[nf] * nc[nf]);
SET_SLOT(val, Matrix_RXXSym, allocMatrix(REALSXP, nc[nf], nc[nf]));
AZERO(REAL(GET_SLOT(val, Matrix_RXXSym)), nc[nf] * nc[nf]);
SET_SLOT(val, Matrix_ZtXSym, allocMatrix(REALSXP, Gp[nf], nc[nf]));
SET_SLOT(val, Matrix_RZXSym, allocMatrix(REALSXP, Gp[nf], nc[nf]));
for (j = 0; j < nf; j++) {
int dind = Lind(j, j), i;
SEXP ctd = VECTOR_ELT(ZZpO, j); /* diagonal in crosstab */
SEXP Ljj = VECTOR_ELT(L, dind),
cpp = GET_SLOT(ctd, Matrix_pSym),
cip = GET_SLOT(ctd, Matrix_iSym), parent;
int *Lp = INTEGER(GET_SLOT(Ljj, Matrix_pSym)), *Perm,
*cp = INTEGER(cpp),
*ci = INTEGER(cip), *dims,
ncj = length(cpp) - 1,
nnz = length(cip);

SET_VECTOR_ELT(Parent, j, Matrix_make_named(VECSXP, pnms));
parent = VECTOR_ELT(Parent, j);
SET_VECTOR_ELT(parent, 0, allocVector(INTSXP, ncj));
SET_VECTOR_ELT(parent, 1, allocVector(INTSXP, ncj));
SET_VECTOR_ELT(perm, j, allocVector(INTSXP, ncj));
Perm = INTEGER(VECTOR_ELT(perm, j));
dims = INTEGER(getAttrib(GET_SLOT(ctd, Matrix_xSym), R_DimSymbol));
if (nnz > ncj) {	/* calculate fill-reducing permutation */
SEXP fac = VECTOR_ELT(flist, j);
SEXP fcp = PROTECT(duplicate(fac));
int *iPerm = Calloc(ncj, int);

ssc_metis_order(ncj, cp, ci, Perm, iPerm);
/* apply to the crosstabulation, L, and ZZpO */
bCrosstab_permute(ZtZ, nf, j, nlev, iPerm);
bCrosstab_permute(L, nf, j, nlev, iPerm);
symmetric_permute(VECTOR_ELT(ZZpO, j), nlev[j], iPerm);
/* apply to the factor */
factor_levels_permute(fac, fcp, Perm, iPerm);
/* symbolic analysis to get Parent */
R_ldl_symbolic(ncj, cp, ci, Lp, INTEGER(VECTOR_ELT(parent, 0)),
(int *) NULL, (int *) NULL);
for (i = 0; i < ncj; i++)
INTEGER(VECTOR_ELT(parent, 1))[i] =
(INTEGER(VECTOR_ELT(parent, 0))[i] < 0) ? -1 : j;
nnz = Lp[ncj];
SET_SLOT(Ljj, Matrix_iSym, allocVector(INTSXP, nnz));
SET_SLOT(Ljj, Matrix_xSym,
alloc3Darray(REALSXP, dims[0], dims[1], nnz));
Free(iPerm); UNPROTECT(1);
} else {
for (i = 0; i < ncj; i++) {
Lp[i] = 0;
INTEGER(VECTOR_ELT(parent,0))[i] = -1;
INTEGER(VECTOR_ELT(parent,1))[i] = -1;
Perm[i] = i;
}
Lp[ncj] = 0;
SET_SLOT(Ljj, Matrix_iSym, allocVector(INTSXP, 0));
SET_SLOT(Ljj, Matrix_xSym,
alloc3Darray(REALSXP, dims[0], dims[1], 0));
}
for (k = j+1; k < nf; k++) { /* Update other blocks in this column */
symbolic_right_unit_mm_trans(ncj, INTEGER(VECTOR_ELT(parent, 0)),
VECTOR_ELT(L, Lind(k,j)));
}
for (k = j+1; k < nf; k++) { /* Update remaining columns */
for (i = k; i < nf; i++) block_update(L, ZZpO, j, k, i);
}
}
/* Convert blockwise Parent arrays to extended Parent arrays */
for (j = 0; j < (nf - 1); j++) { /* Parent[nf] does not need conversion */
SEXP Ljp1j = VECTOR_ELT(L, Lind(j + 1, j)),
LpP = GET_SLOT(Ljp1j, Matrix_pSym);
int *Li = INTEGER(GET_SLOT(Ljp1j, Matrix_iSym)),
*Lp = INTEGER(LpP),
*block = INTEGER(VECTOR_ELT(VECTOR_ELT(Parent, j), 1)),
*parent = INTEGER(VECTOR_ELT(VECTOR_ELT(Parent, j), 0)),
i, nlev = length(LpP) - 1;
for (i = 0; i < nlev; i++) {
if (block[i] < 0) {
block[i] = j + 1;
parent[i] = Li[Lp[i]];
}
}
}
Free(nlev);
}
```