SCM

SCM Repository

[matrix] Diff of /pkg/src/Mutils.h
ViewVC logotype

Diff of /pkg/src/Mutils.h

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 159, Sun May 9 22:06:53 2004 UTC revision 1395, Sun Aug 20 03:15:25 2006 UTC
# Line 1  Line 1 
1  #ifndef MATRIX_MUTILS_H  #ifndef MATRIX_MUTILS_H
2  #define MATRIX_MUTILS_H  #define MATRIX_MUTILS_H
3    
4  #include <Rdefines.h>  #ifdef __cplusplus
5    extern "C" {
6    #endif
7    
8    #include <Rdefines.h> /* Rinternals.h + GET_SLOT etc */
9    #include <R.h>  /* includes Rconfig.h */
10    
11    #ifdef ENABLE_NLS
12    #include <libintl.h>
13    #define _(String) dgettext ("Matrix", String)
14    #else
15    #define _(String) (String)
16    #endif
17    
18    SEXP triangularMatrix_validate(SEXP obj);
19    SEXP symmetricMatrix_validate(SEXP obj);
20    SEXP dense_nonpacked_validate(SEXP obj);
21    
22    /* enum constants from cblas.h and some short forms */
23    enum CBLAS_ORDER {CblasRowMajor=101, CblasColMajor=102};
24    enum CBLAS_TRANSPOSE {CblasNoTrans=111, CblasTrans=112, CblasConjTrans=113};
25    enum CBLAS_UPLO {CblasUpper=121, CblasLower=122};
26    enum CBLAS_DIAG {CblasNonUnit=131, CblasUnit=132};
27    enum CBLAS_SIDE {CblasLeft=141, CblasRight=142};
28    #define RMJ CblasRowMajor
29    #define CMJ CblasColMajor
30    #define NTR CblasNoTrans
31    #define TRN CblasTrans
32    #define CTR CblasConjTrans
33    #define UPP CblasUpper
34    #define LOW CblasLower
35    #define NUN CblasNonUnit
36    #define UNT CblasUnit
37    #define LFT CblasLeft
38    #define RGT CblasRight
39    
40  char norm_type(char *typstr);  char norm_type(char *typstr);
41  char rcond_type(char *typstr);  char rcond_type(char *typstr);
42  double get_double_by_name(SEXP obj, char *nm);  double get_double_by_name(SEXP obj, char *nm);
43  SEXP set_double_by_name(SEXP obj, double val, char *nm);  SEXP set_double_by_name(SEXP obj, double val, char *nm);
44  SEXP as_det_obj(double val, int log, int sign);  SEXP as_det_obj(double val, int log, int sign);
45  SEXP get_factorization(SEXP obj, char *nm);  SEXP get_factors(SEXP obj, char *nm);
46  SEXP set_factorization(SEXP obj, SEXP val, char *nm);  SEXP set_factors(SEXP obj, SEXP val, char *nm);
47  SEXP cscMatrix_set_Dim(SEXP x, int nrow);  SEXP dgCMatrix_set_Dim(SEXP x, int nrow);
48    char uplo_value(SEXP x);
49    char diag_value(SEXP x);
50    
51  int csc_unsorted_columns(int ncol, const int p[], const int i[]);  int csc_unsorted_columns(int ncol, const int p[], const int i[]);
52  void csc_sort_columns(int ncol, const int p[], int i[], double x[]);  void csc_sort_columns(int ncol, const int p[], int i[], double x[]);
53  SEXP triple_as_SEXP(int nrow, int ncol, int nz,  SEXP triple_as_SEXP(int nrow, int ncol, int nz,
54                      const int Ti [], const int Tj [], const double Tx [],                      const int Ti [], const int Tj [], const double Tx [],
55                      char *Rclass);                      char *Rclass);
56  SEXP csc_check_column_sorting(SEXP A);  SEXP csc_check_column_sorting(SEXP A);
57  void csc_components_transpose(int m, int n, int nnz,  void csc_compTr(int m, int n, int nnz,
58                                const int xp[], const int xi[],                  const int xp[], const int xi[], const double xx[],
                               const double xx[],  
59                                int ap[], int ai[], double ax[]);                                int ap[], int ai[], double ax[]);
 void triplet_to_col(int nrow, int ncol, int nz,  
                     const int Ti [], const int Tj [], const double Tx [],  
                     int Ap [], int Ai [], double Ax []);  
60  void ssc_symbolic_permute(int n, int upper, const int perm[],  void ssc_symbolic_permute(int n, int upper, const int perm[],
61                            int Ap[], int Ai[]);                            int Ap[], int Ai[]);
62  double *nlme_symmetrize(double *a, const int nc);  SEXP Matrix_make_named(int TYP, char **names);
63  void nlme_check_Lapack_error(int info, const char *laName);  SEXP check_scalar_string(SEXP sP, char *vals, char *nm);
64  double *  double *packed_getDiag(double *dest, SEXP x);
65  LMEgradient(const double* factor, const double* A, const int nlev,  SEXP Matrix_getElement(SEXP list, char *nm);
66              const int nc, const double* pdgradient, const int plen,  
67              double* value);  #define PACKED_TO_FULL(TYPE)                                            \
68    TYPE *packed_to_full_ ## TYPE(TYPE *dest, const TYPE *src,              \
69                                  /* stored pointers to symbols */                               int n, enum CBLAS_UPLO uplo)
70                                  /* initialized in Matrix_init */  PACKED_TO_FULL(double);
71  extern SEXP  PACKED_TO_FULL(int);
72      Matrix_DSym,  #undef PACKED_TO_FULL
73      Matrix_DIsqrtSym,  
74      Matrix_DimSym,  #define FULL_TO_PACKED(TYPE)                                            \
75      Matrix_GpSym,  TYPE *full_to_packed_ ## TYPE(TYPE *dest, const TYPE *src, int n,       \
76      Matrix_LiSym,                                enum CBLAS_UPLO uplo, enum CBLAS_DIAG diag)
77      Matrix_LpSym,  FULL_TO_PACKED(double);
78      Matrix_LxSym,  FULL_TO_PACKED(int);
79      Matrix_OmegaSym,  #undef FULL_TO_PACKED
80      Matrix_ParentSym,  
81      Matrix_RXXSym,  
82      Matrix_RZXSym,  extern   /* stored pointers to symbols initialized in R_init_Matrix */
83      Matrix_XtXSym,  #include "Syms.h"
84      Matrix_ZtXSym,  
85      Matrix_bVarSym,  /* zero an array */
86      Matrix_devianceSym,  #define AZERO(x, n) {int _I_, _SZ_ = (n); for(_I_ = 0; _I_ < _SZ_; _I_++) (x)[_I_] = 0;}
87      Matrix_devCompSym,  
88      Matrix_diagSym,  /* number of elements in one triangle of a square matrix of order n */
89      Matrix_iSym,  #define PACKED_LENGTH(n)   ((n) * ((n) + 1))/2
90      Matrix_ipermSym,  
91      Matrix_jSym,  /* duplicate the slot with name given by sym from src to dest */
92      Matrix_matSym,  #define slot_dup(dest, src, sym)  SET_SLOT(dest, sym, duplicate(GET_SLOT(src, sym)))
93      Matrix_ncSym,  
94      Matrix_pSym,  #define uplo_P(_x_) CHAR(STRING_ELT(GET_SLOT(_x_, Matrix_uploSym), 0))
95      Matrix_permSym,  #define diag_P(_x_) CHAR(STRING_ELT(GET_SLOT(_x_, Matrix_diagSym), 0))
96      Matrix_statusSym,  
97      Matrix_uploSym,  
98      Matrix_xSym,  /**
99      Matrix_zSym;   * Check for valid length of a packed triangular array and return the
100     * corresponding number of columns
101     *
102     * @param len length of a packed triangular array
103     *
104     * @return number of columns
105     */
106    static R_INLINE
107    int packed_ncol(int len)
108    {
109        int disc = 8 * len + 1;     /* discriminant */
110        int sqrtd = (int) sqrt((double) disc);
111    
112        if (len < 0 || disc != sqrtd * sqrtd)
113            error(_("invalid 'len' = %d in packed_ncol"));
114        return (sqrtd - 1)/2;
115    }
116    
117    /**
118     * Allocate an SEXP of given type and length, assign it as slot nm in
119     * the object, and return the SEXP.  The validity of this function
120     * depends on SET_SLOT not duplicating val when NAMED(val) == 0.  If
121     * this behavior changes then ALLOC_SLOT must use SET_SLOT followed by
122     * GET_SLOT to ensure that the value returned is indeed the SEXP in
123     * the slot.
124     *
125     * @param obj object in which to assign the slot
126     * @param nm name of the slot, as an R name object
127     * @param type type of SEXP to allocate
128     * @param length length of SEXP to allocate
129     *
130     * @return SEXP of given type and length assigned as slot nm in obj
131     */
132    static R_INLINE
133    SEXP ALLOC_SLOT(SEXP obj, SEXP nm, SEXPTYPE type, int length)
134    {
135        SEXP val = allocVector(type, length);
136    
137        SET_SLOT(obj, nm, val);
138        return val;
139    }
140    
141    /**
142     * Expand compressed pointers in the array mp into a full set of indices
143     * in the array mj.
144     *
145     * @param ncol number of columns (or rows)
146     * @param mp column pointer vector of length ncol + 1
147     * @param mj vector of length mp[ncol] to hold the result
148     *
149     * @return mj
150     */
151    static R_INLINE
152    int* expand_cmprPt(int ncol, const int mp[], int mj[])
153    {
154        int j;
155        for (j = 0; j < ncol; j++) {
156            int j2 = mp[j+1], jj;
157            for (jj = mp[j]; jj < j2; jj++) mj[jj] = j;
158        }
159        return mj;
160    }
161    
162    
163    /**
164     * Return the linear index of the (row, col) entry in a csc structure.
165     * If the entry is not found and missing is 0 an error is signaled;
166     * otherwise the missing value is returned.
167     *
168     * @param p vector of column pointers
169     * @param i vector of row indices
170     * @param row row index
171     * @param col column index
172     * @param missing the value to return is the row, col entry does not
173     * exist.  If this is zero and the row, col entry does not exist an
174     * error is signaled.
175     *
176     * @return index of element at (row, col) if it exists, otherwise missing
177     */
178    static R_INLINE int
179    check_csc_index(const int p[], const int i[], int row, int col, int missing)
180    {
181        int k, k2 = p[col + 1];
182                                    /* linear search - perhaps replace by bsearch */
183        for (k = p[col]; k < k2; k++) if (i[k] == row) return k;
184        if (!missing)
185            error("row %d and column %d not defined in rowind and colptr",
186                  row, col);
187        return missing;
188    }
189    
190    SEXP alloc3Darray(SEXPTYPE mode, int nrow, int ncol, int nface);
191    
192    /**
193     * Calculate the zero-based index in a row-wise packed lower triangular matrix.
194     * This is used for the arrays of blocked sparse matrices.
195     *
196     * @param i column number (zero-based)
197     * @param k row number (zero-based)
198     *
199     * @return The index of the (k,i) element of a packed lower triangular matrix
200     */
201    static R_INLINE
202    int Lind(int k, int i)
203    {
204        if (k < i) error("Lind(k = %d, i = %d) must have k >= i", k, i);
205        return (k * (k + 1))/2 + i;
206    }
207    
208    /**
209     * Check for a complete match on matrix dimensions
210     *
211     * @param xd dimensions of first matrix
212     * @param yd dimensions of second matrix
213     *
214     * @return 1 if dimensions match, otherwise 0
215     */
216    static R_INLINE
217    int match_mat_dims(const int xd[], const int yd[])
218    {
219        return xd[0] == yd[0] && xd[1] == yd[1];
220    }
221    
222    double *expand_csc_column(double *dest, int m, int j,
223                              const int Ap[], const int Ai[], const double Ax[]);
224    
225    /**
226     * Apply a permutation to an integer vector
227     *
228     * @param i vector of 0-based indices
229     * @param n length of vector i
230     * @param perm 0-based permutation vector of length max(i) + 1
231     */
232    static R_INLINE void
233    int_permute(int i[], int n, const int perm[])
234    {
235        int j;
236        for (j = 0; j < n; j++) i[j] = perm[i[j]];
237    }
238    
239    /**
240     * Force index pairs to be in the upper triangle of a matrix
241     *
242     * @param i vector of 0-based row indices
243     * @param j vector of 0-based column indices
244     * @param nnz length of index vectors
245     */
246    static R_INLINE void
247    make_upper_triangular(int i[], int j[], int nnz)
248    {
249        int k;
250        for (k = 0; k < nnz; k++) {
251            if (i[k] > j[k]) {
252                int tmp = i[k];
253                i[k] = j[k];
254                j[k] = tmp;
255            }
256        }
257    }
258    
259    void make_d_matrix_triangular(double *x, SEXP from);
260    void make_i_matrix_triangular(   int *x, SEXP from);
261    
262    void make_d_matrix_symmetric(double *to, SEXP from);
263    void make_i_matrix_symmetric(   int *to, SEXP from);
264    
265    SEXP Matrix_expand_pointers(SEXP pP);
266    
267    
268    /**
269     * Elementwise increment dest by src
270     *
271     * @param dest vector to be incremented
272     * @param src vector to be added to dest
273     * @param n length of vectors
274     *
275     * @return dest
276     */
277    static R_INLINE double*
278    vecIncrement(double dest[], const double src[], int n) {
279        int i;
280        for (i = 0; i < n; i++) dest[i] += src[i];
281        return dest;
282    }
283    
284    /**
285     * Elementwise sum of src1 and src2 into dest
286     *
287     * @param dest vector to be incremented
288     * @param src1 vector to be added
289     * @param src1 second vector to be added
290     * @param n length of vectors
291     *
292     * @return dest
293     */
294    static R_INLINE double*
295    vecSum(double dest[], const double src1[], const double src2[],
296           int n) {
297        int i;
298        for (i = 0; i < n; i++) dest[i] = src1[i] + src2[i];
299        return dest;
300    }
301    
302    SEXP alloc_real_classed_matrix(char *class, int nrow, int ncol);
303    SEXP alloc_dgeMatrix(int m, int n, SEXP rownms, SEXP colnms);
304    SEXP alloc_dpoMatrix(int n, char *uplo, SEXP rownms, SEXP colnms);
305    SEXP alloc_dtrMatrix(int n, char *uplo, char *diag, SEXP rownms, SEXP colnms);
306    SEXP alloc_dsCMatrix(int n, int nz, char *uplo, SEXP rownms, SEXP colnms);
307    
308    SEXP dup_mMatrix_as_dgeMatrix(SEXP A, SEXP classed);
309    
310    #ifdef __cplusplus
311    }
312  #endif  #endif
313    
314    #endif /* MATRIX_MUTILS_H_ */

Legend:
Removed from v.159  
changed lines
  Added in v.1395

root@r-forge.r-project.org
ViewVC Help
Powered by ViewVC 1.0.0  
Thanks to:
Vienna University of Economics and Business Powered By FusionForge