SCM Repository
[matrix] / pkg / man / mcmcsamp.Rd |
View of /pkg/man/mcmcsamp.Rd
Parent Directory
|
Revision Log
Revision 1299 -
(download)
(as text)
(annotate)
Mon Jun 12 08:06:21 2006 UTC (14 years, 7 months ago) by maechler
File size: 3002 byte(s)
Mon Jun 12 08:06:21 2006 UTC (14 years, 7 months ago) by maechler
File size: 3002 byte(s)
mcmcsamp()[,"deviance"] was wrong column
\name{mcmcsamp} \docType{genericFunction} \alias{mcmcsamp} \alias{mcmcsamp,mer-method} \title{Generate an MCMC sample} \description{ This generic function generates a sample from the posterior distribution of the parameters of a fitted model using Markov Chain Monte Carlo methods. } \usage{ mcmcsamp(object, n, verbose, \dots) } \arguments{ \item{object}{An object of a suitable class - usually an \code{\linkS4class{lmer}} object. } \item{n}{integer - number of samples to generate. Defaults to 1.} \item{verbose}{logical - if \code{TRUE} verbose output is printed. Defaults to \code{FALSE}.} \item{\dots}{Some methods for this generic function may take additional, optional arguments. The method for \code{\linkS4class{lmer}} objects takes the optional argument \code{saveb} which, if \code{TRUE}, causes the values of the random effects in each sample to be saved. Note that this can result in very large objects being saved. Use with caution. A second optional argument is \code{trans} which, if \code{TRUE} (the default), returns a sample of transformed parameters. All variances are expressed on the logarithm scale and any covariances are converted to Fisher's "z" transformation of the corresponding correlation.} } \value{ An object of (S3) class \code{"mcmc"} suitable for use with the functions in the "coda" package. } \section{Methods}{ \describe{ \item{object = "lmer"}{generate MCMC samples from the posterior distribution of the parameters of a linear mixed model or a generalized linear mixed model. The prior on the fixed effects parameters is taken to be locally uniform. The prior on the variance-covariance matrices of the random effects is taken to be the locally non-informative prior described in Box and Tiao (1973). Conditional on the current values of the random effects these are sampled from a Wishart distribution.} } } \examples{ require("lattice", quietly = TRUE, character = TRUE) (fm1 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy)) set.seed(101) samp1 <- mcmcsamp(fm1, n = 1000) frm <- data.frame(vals = c(samp1), iter = rep(1:nrow(samp1), ncol(samp1)), par = factor(rep(1:ncol(samp1), each = nrow(samp1)),labels = colnames(samp1))) densityplot(~ vals | par, frm, plot = FALSE, scales = list(relation = 'free', x = list(axs='i'))) xyplot(vals ~ iter | par, frm, layout = c(1, ncol(samp1)), scales = list(x = list(axs = "i"), y = list(relation = "free")), main = "Trace plot", xlab = "Iteration number", ylab = "", type = "l") qqmath(~ vals | par, frm, type = 'l', scales = list(y = list(relation = 'free'))) if (require("coda", quietly = TRUE, character = TRUE)) { print(summary(samp1)) print(autocorr.diag(samp1)) } (eDF <- mean(samp1[,"deviance"]) - deviance(fm1)) # potentially useful approximate D.F. \dontshow{ stopifnot(abs(eDF - 15) < 1) } } \keyword{methods} \keyword{datagen}
root@r-forge.r-project.org | ViewVC Help |
Powered by ViewVC 1.0.0 |