SCM Repository
View of /pkg/Matrix/tests/Simple.R
Parent Directory
|
Revision Log
Revision 3020 -
(download)
(annotate)
Tue Oct 14 16:14:02 2014 UTC (4 years, 4 months ago) by mmaechler
File size: 35221 byte(s)
Tue Oct 14 16:14:02 2014 UTC (4 years, 4 months ago) by mmaechler
File size: 35221 byte(s)
dimnames(), notably names(dimnames()) -- primarily in connection with symmpart(), skewpart() and forceSymmetric()
#### Currently a collection of simple tests ## (since 'Matrix' takes long to load, rather have fewer source files!) ##-------- *BEFORE* attaching Matrix: -------------------------------- str(Matrix::Matrix)# -> load the namespace T <- new("ngTMatrix", i=0L, j=2L, Dim = c(2L,6L)) T as(T, "CsparseMatrix") ## gave Error in asMethod(object) : could not find function ".M.classEnv" ## from 0.999375-23 to *-25 ## another even shorter version of this: n <- new("dgCMatrix") n ## this: m <- Matrix::Matrix(cbind(1,0,diag(x=2:4))) m ##-------------------------------------------------------------------- library(Matrix) source(system.file("test-tools.R", package = "Matrix"))# identical3() etc if(interactive()) { options(error = recover, warn = 1) } else options(Matrix.verbose = TRUE, warn = 1)# to show Matrix.msg()s ### Matrix() ''smartness'' (d4 <- Matrix(diag(4))) (z4 <- Matrix(0*diag(4))) (o4 <- Matrix(1+diag(4))) (tr <- Matrix(cbind(1,0:1))) (M4 <- Matrix(m4 <- cbind(0,rbind(6*diag(3),0)))) dM4 <- Matrix(M4, sparse = FALSE) class(mN <- Matrix(NA, 3,4)) # NA *is* logical validObject(Matrix(NA)) bd4 <- bdiag(M4,dM4,M4) stopifnot(isValid(o4, "dsyMatrix"), isValid(M4, "dtCMatrix"), validObject(dM4), validObject(mN), identical(bdiag(M4), bdiag(dM4)), identical(bd4@p, c(0L,0:3,3:6,6:9)), identical(bd4@i, c(0:2, 4:6, 8:10)), bd4@x == 6 ) assert.EQ.mat(dM4, m4) assert.EQ.mat(M4^M4, m4^m4) assert.EQ.mat(mN, matrix(NA, 3,4)) assert.EQ.mat(bdiag(diag(4)), diag(4)) sL <- Matrix(, 3,4, sparse=TRUE)# -> "lgC" trS <- Matrix(tr, sparse=TRUE)# failed in 0.9975-11 stopifnot(isValid(d4, "diagonalMatrix"), isValid(z4, "diagonalMatrix"), isValid(tr, "triangularMatrix"), isValid(trS, "triangularMatrix"), all(is.na(sL@x)), ## not yet: all(is.na(sL)), !any(sL, na.rm=TRUE), all(!sL, na.rm=TRUE), validObject(Matrix(c(NA,0), 4, 3, byrow = TRUE)), validObject(Matrix(c(NA,0), 4, 4)), isValid(Matrix(c(NA,0,0,0), 4, 4), "sparseMatrix")) I <- i1 <- I1 <- Diagonal(1) I1[1,1] <- i1[1, ] <- I [ ,1] <- NA stopifnot(identical3(I,i1,I1)) image(d4) # gave infinite recursion ## Steve Walker, Mar 12, 2014: n <- 7 (M <- triu(Matrix(seq_len(n^2), n, sparse=TRUE))) im <- image(M) # should be an n-by-n image plot, but is not stopifnot(n == diff(sort(im$y.limits))) ## ylimits were too small (by 1 on each side) assertError( Matrix(factor(letters)) ) mlp <- matrix(.leap.seconds)## 24 x 1 numeric matrix Mlp <- Matrix(.leap.seconds) assert.EQ.mat(Mlp, mlp) if(FALSE) { ## TODO -- once R itself does better ... .Leap.seconds <- as.POSIXlt(.leap.seconds) mLp <- matrix(.Leap.seconds)## 24 x 1 list each of length 24 -- yuck!!! MLp <- Matrix(.Leap.seconds)## --> error (for now) } E <- rep(c(TRUE,NA,TRUE), length=8) F <- new("nsparseVector", length = 8L, i = c(2L, 5L, 8L)) e <- as(E, "sparseVector"); f <- as(F,"lsparseVector") stopifnot(E | as.vector(F), identical(E | F, F | E), all(e | f), all(E | F)) # <- failed Ops.spv.spv dT <- new("dgTMatrix", i = c(1:2,1:2), j=rep(1:2, each=2), Dim = c(4L, 4L), x = c(1, 1, NA, 2)) dt <- new("dtTMatrix", i = 0:3, j = 0:3, Dim = c(4L, 4L), x = c(1,0,0,0), uplo = "U", diag = "N") c1 <- as(dT, "CsparseMatrix") c2 <- as(dt, "CsparseMatrix") isValid(lc <- c1 > c2,"lgCMatrix") isValid(lt <- dT > dt,"lgCMatrix") stopifnot(identical(lc,lt)) M <- Diagonal(4); M[1,2] <- 2 ; M cM <- crossprod(M) # >> as_cholmod_l_triplet(): could not reallocate for internal diagU2N() stopifnot(identical(cM, tcrossprod(t(M)))) if(doExtras) { ## formerly in MM-only's ./AAA_latest.R ## 2010-11-29 --- prompted by BDR: mlp <- matrix(.leap.seconds)## 24 x 1 numeric matrix Mlp <- Matrix(.leap.seconds) assert.EQ.mat(Mlp, mlp) S.na <- spMatrix(3, 4, c(1,2,3), c(2,3,3), c(NA,1,0)) show(S.na <- S.na - 2 * S.na) show(L <- S.na != 0) M0 <- Matrix(0, 3, 4) show(Ln0 <- S.na != rep(0, prod(dim(L)))) stopifnot(Q.eq(L, Ln0), identical(Ln0, M0 != S.na)) }## (doExtras) only ### Unit-diagonal and unitriangular {methods need diagU2N() or similar} I <- Diagonal(3) (T <- as(I,"TsparseMatrix")) # unitriangular (C <- as(I,"CsparseMatrix")) # (ditto) lT <- as(T,"lMatrix") lC <- as(C,"lMatrix") stopifnot( identical((n0 <- I != 0), Diagonal(3, TRUE)), I@diag == "U", identical(n0, I & TRUE), identical(n0, I | FALSE), identical(n0, TRUE & I), identical(n0, FALSE | I), all(n0 == !(I == 0)), all(I == n0), identical(n0 == I, I == n0) , identical4(lT, as(Diagonal(3, x=TRUE),"TsparseMatrix"), T & TRUE, TRUE & T), identical4(lC, as(Diagonal(3, x=TRUE),"CsparseMatrix"), C & TRUE, TRUE & C), identical3(lT, T | FALSE, FALSE | T), identical3(lC, C | FALSE, FALSE | C), TRUE) I[,1] <- NA; I[2,2] <- NA ; I[3,] <- NaN stopifnot(isValid(I, "sparseMatrix")) I # gave error in printSpMatrix() - because of R bug in format.info() L <- spMatrix(9, 30, i = rep(1:9, 3), 1:27, (1:27) %% 4 != 1) M <- drop0(crossprod(L)) diag(M) <- diag(M) + 5 # to make it pos.def. M. <- M[1:12,1:12] # small ex N3 <- as(Matrix(upper.tri(diag(3))), "nMatrix") isValid(bdN <- bdiag(N3, N3),"nsparseMatrix") stopifnot(identical(L, L == TRUE), ## used to give infinite recursion all(drop0((0 - L) != 0) == drop0(L))) L[sample(length(L), 10)] <- NA ll <- as(L,"logical") stopifnot(all.equal(mean(L, na.rm=TRUE), mean(ll, na.rm=TRUE), tol= 1e-14), all.equal(mean(L, na.rm=TRUE, trim=1/4),# <- with a warning mean(ll, na.rm=TRUE, trim=1/4), tol= 1e-14)) ## Examples where is.na(.) was wrong: validObject(sc <- new("dsCMatrix", i=as.integer(c(0,0:1,1:2,0:1,3)), Dim=c(4L,4L), p = c(0L,1L,3L,5L,8L), x = c(0,NA,NA,0:1,0,NA,1))) validObject(gc <- as(sc, "generalMatrix")) stopifnot(isSymmetric(M), isSymmetric(M.), is(bdiag(M., M.),"symmetricMatrix"), is(bdN, "triangularMatrix"), all(sc == gc | (is.na(sc) & is.na(gc))), all.equal(N3,N3), tail(all.equal(N3, t(N3)), 1) == all.equal(1,-1),# ~= "Mean relative difference: 2" all((bdN != t(bdN)) == (bdN + t(bdN))), # <nsparse> != <nsparse> failed to work... !any((0+bdN) > bdN), # <dsparse> o <nsparse> !any(bdN != (0+bdN)), # <nsparse> o <dsparse> length(grep("Length", all.equal(M., (vM <- as.vector(M.))))) > 0, identical(M., (M2 <- Matrix(vM, 12,12))), all.equal(M., M2, tolerance =0) ) ## large sparse ones: these now directly "go sparse": str(m0 <- Matrix(0, nrow=100, ncol = 1000)) str(l0 <- Matrix(FALSE, nrow=100, ncol = 200)) stopifnot(all(!l0), identical(FALSE, any(l0))) if(!interactive()) warnings() ## really large {length(<dense equivalent>) is beyond R's limits}: op <- options(warn = 2) # warnings (e.g. integer overflow!) become errors: n <- 50000L stopifnot(n^2 > .Machine$integer.max) ## had integer overflow in index constructions: x <- 1:n D <- Diagonal(n, x=x[n:1]) summary(D)# special method summary(D != 0) stopifnot(identical(x*D, (Dx <- D*x)), identical(D != 0, as(D, "lMatrix")), identical(Dx, local({d <- D; d@x <- d@x * x; d}))) Lrg <- new("dgTMatrix", Dim = c(n,n)) diag(Lrg[2:9,1:8]) <- 1:8 ## ==: Lrg[2:9,1:8] <- `diag<-`(Lrg[2:9,1:8], 1:8) e1 <- try(Lrg == Lrg) # error message almost ok e2 <- try(!Lrg) # error message was "bad", now perfect ina <- is.na(Lrg)# "all FALSE" stopifnot(grep("too large", e1) == 1, grep("too large", e2) == 1, !any(ina))# <- gave warning previously stopifnot(suppressWarnings(any(Lrg)))# (double -> logical warning) ## with dimnames: v <- c(a=1, b=2:3) m <- as.matrix(v) M <- as(v, "dgeMatrix") stopifnot(identical(dimnames(m), list(c("a", "b1", "b2"), NULL)), identical(M, as(m, "dgeMatrix")), identical(dimnames(M), dimnames(m))) ## dimnames(.) of symmpart() / skewpart() : ns <- c("symmpart", "skewpart", "forceSymmetric") symFUNs <- setNames(lapply(ns, get), ns); rm(ns) chkSS <- function(m) { r <- lapply(symFUNs, function(fn) fn(m)) m0 <- as(m, "matrix") r0 <- lapply(symFUNs, function(fn) fn(m0)) isValid(fS <- r [["forceSymmetric"]], "symmetricMatrix") isValid(fS0 <- r0[["forceSymmetric"]], "symmetricMatrix") dnms <- dimnames(m) d.sy <- dimnames(r[["symmpart"]]) id <- if(is.null(dnms[[2]]) && !is.null(dnms[[1]])) 1 else 2 stopifnot(identical(d.sy, dnms[c(id,id)]), identical(d.sy, dimnames(r [["skewpart"]])), identical(d.sy, dimnames(r0[["skewpart"]])), all(m == with(r, symmpart + skewpart)), all(m0 == with(r0, symmpart + skewpart)), identical(dS <- dimnames(fS), dimnames(fS0)), identical(dS[1], dS[2]), TRUE) } for(m in list(Matrix(1:4, 2,2), Matrix(c(0, rep(1:0, 3),0:1), 3,3))) { cat("\n---\nm:\n"); show(m) chkSS(m) dn <- list(row = paste0("r", 1:nrow(m)), col = paste0("var.", 1:ncol(m))) dimnames(m) <- dn ; chkSS(m) colnames(m) <- NULL ; chkSS(m) dimnames(m) <- unname(dn) ; chkSS(m) } m. <- matrix(c(0, 0, 2:0), 3, 5) dimnames(m.) <- list(LETTERS[1:3], letters[1:5]) (m0 <- m <- Matrix(m.)) m@Dimnames[[2]] <- m@Dimnames[[1]] ## not valid anymore: (val <- validObject(m, test=TRUE)); stopifnot(is.character(val)) dm <- as(m0, "denseMatrix"); rm(m) stopifnot(all.equal(rcond(dm), rcond(m.), tolerance = 1e-14), ##^^^^^^^ dm and m. are both dense, interestingly small differences ## show in at least one case of optimized BLAS all.equal(rcond(dm), 0.4899474520656), ## show(<dgRMatrix>) had revealed a bug in C: identical(capture.output(show(as(m0, "RsparseMatrix")))[-(1:2)], gsub("0", ".", capture.output(show(m.))[-1]))) m.1 <- m.; dimnames(m.1) <- list(row=NULL, col=NULL) M.1 <- Matrix(m.1, sparse=TRUE) show(M.1)# had bug in .formatSparseSimple() ###-- Sparse Triangular : g5 <- new("dgCMatrix", Dim = c(5L, 5L), x = c(10, 1, 3, 10, 1, 10, 1, 10, 10), i = c(0L,2L,4L, 1L, 3L,2L,4L, 3L, 4L), p = c(0L, 3L, 5L, 7:9)) t5 <- as(g5, "triangularMatrix") # fine stopifnot(class(t5) == "dtCMatrix", identical(t5, tril(g5))) ## This is really a regression test for 'methods::selectMethod()' ## Maybe move to R once 'Matrix' is recommended sm <- selectMethod(coerce, c("dgCMatrix", "triangularMatrix"), verbose=TRUE) stopifnot(identical(sm(g5), t5)) dimnames(t5) <- list(row=paste0("r",1:5), col=paste0("C.",1:5)) s5 <- symmpart(t5) # gave an error (t1 <- new("dtTMatrix", x= c(3,7), i= 0:1, j=3:2, Dim= as.integer(c(4,4)))) ## Diagonal o Sparse I4 <- Diagonal(4) D4 <- Diagonal(4, x=1:4) validObject(t2 <- t1 + I4) validObject(tt2 <- t(t1) + I4) validObject(t1c <- as(t1, "CsparseMatrix")) validObject(t2c <- as(t2, "CsparseMatrix")) stopifnot(validObject(t1), isValid(2 * I4, "diagonalMatrix"), isValid(D4 * 3, "diagonalMatrix"), isValid(I4 / 5, "diagonalMatrix"), isValid(D4 / 2, "diagonalMatrix"), identical(t1, t(t(t1))), identical(t1c, t(t(t1c))), isValid(t1c + I4,"triangularMatrix"), isValid(t2c + I4,"triangularMatrix"), c(class(t2), class(t1c), class(t2c), class(tt2)) == "dtCMatrix", identical(t(tt2), t2)) assert.EQ.mat(t1, as(t1c, "matrix")) D4. <- D4 * (A4 <- Matrix(1:4, 4,4)) D4p <- A4 + D4 Lg1 <- D4 > 0 & D4 > 1 nLg <- !Lg1 nnLg <- !nLg D4m <- D4 * 4:1 assert.EQ.mat(D4., diag(x= (1:4)^2)) assert.EQ.mat(D4p, diag(x= (1:4)) + (1:4)) assert.EQ.mat(D4m, diag(x=c(4,6,6,4))) assert.EQ.mat(Lg1, diag(x= c(FALSE, rep(TRUE,3)))) stopifnot(is(Lg1, "diagonalMatrix"), is(D4m, "diagonalMatrix"), is(D4., "diagonalMatrix"), is(nLg, "symmetricMatrix"), is(nnLg, "symmetricMatrix"), identical3(Lg1, Matrix(nnLg), as(nnLg, "diagonalMatrix")), all(Lg1 != (!Lg1))) ## as(<diag>, <anything>) : str(cls <- names(getClass("Matrix")@subclasses))# all Matrix classes for(cl in cls) if(canCoerce(I4, cl)) { cat(cl,":") M <- as(I4, cl) M. <- as(D4, cl) stopifnot(diag(4) == as(M,"matrix"), if(is(cl,"dMatrix")) diag(x=1:4) == as(M.,"matrix") else TRUE) cat(" [Ok]\n") } s4 <- as(D4,"sparseMatrix") v <- c(11,2,2,12); s4[2:3,2:3] <- v; validObject(s4) s4. <- D4; s4.[2:3,2:3] <- v; validObject(s4.) stopifnot(all(s4 == s4.)) ## now assign symmetrically to symmetricMatrix s4 <- as(as(D4,"sparseMatrix"),"symmetricMatrix") s4[2:3,2:3] <- v validObject(s4) stopifnot(is(s4,"symmetricMatrix")) assert.EQ.mat(s4, as(s4.,"matrix"),tol=0) ## lower-triangular unit-diagonal L <- new("dtCMatrix", i = 1L, p = c(0:1, 1L), Dim = c(2L, 2L), x = 0.5, uplo = "L", diag = "U") stopifnot(range(L) == 0:1, all.equal(mean(L), 5/8)) ## from 0-diagonal to unit-diagonal triangular {low-level step}: tu <- t1 ; tu@diag <- "U" tu validObject(cu <- as(tu, "dtCMatrix")) validObject(cnu <- diagU2N(cu))# <- testing diagU2N validObject(tu. <- as(cu, "dtTMatrix")) validObject(tt <- as(cu, "TsparseMatrix")) stopifnot(## NOT: identical(tu, tu.), # since T* is not unique! identical(cu, as(tu., "dtCMatrix")), length(cnu@i) == length(cu@i) + nrow(cu), identical(cu, diagN2U(cnu)),# <- testing diagN2U all(cu >= 0, na.rm = TRUE), all(cu >= 0), any(cu >= 7)) validObject(tcu <- t(cu)) validObject(ttu <- t(tu)) validObject(ltu <- as(ttu, "lMatrix")) validObject(ldtu <- as(ltu, "denseMatrix")) validObject(Cltu <- as(ltu, "CsparseMatrix")) stopifnot(identical(asCsp(ttu > 0), asCsp(ltu)), all(ltu == as(ttu > 0,"denseMatrix"))) ltu - (ttu > 0) # failed assert.EQ.mat(cu, as(tu,"matrix"), tol=0) assert.EQ.mat(cnu, as(tu,"matrix"), tol=0) C <- suppressWarnings(Matrix(c(0,1,0,0), 5,5)) + Diagonal(5) (tU <- diagN2U(tril(C))) # dtC Unitriangular ntU <- as(tU, "nMatrix") nT <- as(ntU, "TsparseMatrix") R <- as(tU, "RsparseMatrix") Tt <- diagU2N(R) # used to accidentally drop the diag. stopifnot(R@x == c(1,1,1), diag(Tt) == 1) lcu <- new("ltCMatrix", Dim = c(4L, 4L), i = c(0:1, 0L), p = c(0L, 0:3), x = c(TRUE, FALSE, FALSE), uplo = "U", diag = "U") (lTu <- as(lcu,"TsparseMatrix"))# prints wrongly (in Matrix 0.999375-31) stopifnot(identical3(rowSums(lcu), rowSums(lTu), rowSums(drop0(lcu)))) (ncu <- as(lcu, "nMatrix"))# -- gives the "pattern" of lcu, i.e. FALSE are *there* ncn <- diagU2N(ncu) (cncn <- crossprod(ncn))# works -> "nsCMatrix" stopifnot(identical(ncu, as(lcu,"nsparseMatrix")), identical(rowSums(ncu), c(3:1, 1L)), Q.eq(ncn, ncu), Q.eq(crossprod(drop0(lcu)), crossprod(lcu)),# crossprod works -> "dsCMatrix" identical(crossprod(ncu), cncn), Q.eq(cncn, t(ncu) %*% ncu)) #used to seg.fault U <- new("dtCMatrix", Dim = c(6L, 6L), i = c(0:1, 0L, 2:3, 1L, 4L), p = c(0L,0L,0L, 2:3, 5L, 7L), x = rep.int(-0.5, 7), diag = "U") validObject(U) U. <- solve(iU <- solve(U))#-> gave segmentation fault stopifnot(validObject(U), ## had a case where solve(U) modified U ! validObject(iU), validObject(U.), ## no rounding error, since have iU@x * 8 is integer : identical(U, diagN2U(drop0(U.)))) ## <sparse> o <numeric> (of length > 1): stopifnot(isValid(tm <- tu * 1:8, "sparseMatrix"), identical4(tm, cu * 1:8, 1:8 * cu, 1:8 * tu)) cu[1,2] <- tu[1,2] <- NA mu <- as(tu,"matrix") stopifnot(isValid(cu, "CsparseMatrix"), isValid(cu, "triangularMatrix"), isValid(tu, "TsparseMatrix"), isValid(tu, "triangularMatrix"), identical(cu * 1:8, tu * 1:8), # but are no longer triangular identical(cu > .1, as(tu > .1, "CsparseMatrix")), all(cu >= 0, na.rm=TRUE), !all(cu >= 1), is.na(all(tu >= 0)), ## Csparse_drop: preserves triangularity incl diag="U" identical(cu, .Call(Matrix:::Csparse_drop, cu, 0.)) ) assert.EQ.mat(cu * 1:8, mu * 1:8) ina <- is.na(as(cu,"matrix")) ## These 3 were each different (2008-03) !! stopifnot(all(ina == is.na(cu)), all(ina == is.na(as(cu,"generalMatrix"))), all(ina == as(is.na(as(cu,"matrix")),"nMatrix"))) set.seed(7) xx <- rpois(10, 50) Samp <- function(n,size) sample(n, size, replace=TRUE) Tn <- sparseMatrix(i=Samp(8, 50), j=Samp(9,50), x=xx, giveCsparse=FALSE) Tn stopifnot(xx == Tn@x, max(xx) < max(Tn), 0 == min(Tn), (sT <- sum(Tn)) == sum(colSums(Tn)), sT == sum(Tn@x), range(Tn) == range(as(Tn, "CsparseMatrix"))) ## tu. is diag "U", but tu2 not: tu2 <- as(as(tu., "generalMatrix"), "triangularMatrix") assert.EQ.mat(cu, mu, tol=0) stopifnot(identical3(cu[cu > 1], tu [tu > 1], mu [mu > 1]), identical3(cu <= 1, tu <= 1, as(mu <= 1, "lMatrix")),# all lgeMatrix identical3(cu[cu <= 1], tu[tu <= 1], mu[mu <= 1]), identical3(cu , triu(cu ), t(t(cu))), identical3(tu , triu(tu ), t(t(tu))), identical3(tu., triu(tu.), t(t(tu.))), identical(tu2, triu(tu2)), identical(tcu , tril(tcu)), identical(ttu , tril(ttu)), identical(t(tu), tril(t(tu))) ) assert.EQ.mat(triu(cu), as.matrix(triu(as.matrix(cu)))) for(k in -1:1) assert.EQ.mat(tril(cu,k), as.matrix(tril(as.matrix(cu),k))) (dtr <- Matrix(local({m <- diag(2); m[1,2] <- 3;m}))) identical(dtr, triu(dtr)) assert.EQ.mat(tril(dtr), diag(2)) (t4 <- new("dgTMatrix", i = 3:0, j = 0:3, x = rep(1,4), Dim = as.integer(c(4,4)))) c4 <- as(t4, "CsparseMatrix") ## the same but "dsT" (symmetric) suppressWarnings(M <- Matrix(c(0, rep(c(0,0:1),4)), 4,4))# warning:.. length [13] is not ..multiple tt <- as(M, "TsparseMatrix") stopifnot(all.equal(triu(t4) + tril(t4), c4), all.equal(triu(tt) + tril(tt), c4)) ###-- Numeric Dense: Crossprod & Solve set.seed(123) mm. <- mm <- Matrix(rnorm(500 * 150), nc = 150) stopifnot(validObject(mm)) xpx <- crossprod(mm) stopifnot(identical(mm, mm.),# once upon a time, mm was altered by crossprod() isValid(xpx, "dpoMatrix")) str(mm) # 'dge*" str(xpx)# 'dpo*" xpy <- crossprod(mm, rnorm(500)) res <- solve(xpx, xpy) str(xpx)# now with Cholesky factor stopifnot(validObject(xpx), validObject(xpy), validObject(res)) stopifnot(all.equal(xpx %*% res, xpy, tolerance = 1e-12)) lp <- xpx >= 1 slp <- as(lp, "sparseMatrix") ltlp <- lp[ lower.tri(lp) ] sltlp <- slp[ lower.tri(slp) ] dim(ij <- which(lower.tri(lp), arr.ind = TRUE)) ss <- slp[ij] # now fast (!) stopifnot(identical4(lp[ij], ltlp, sltlp, as(lp, "matrix")[ij]), identical(ss, sltlp), isValid(lp, "lsyMatrix"), lp@uplo == "U") ###-- more solve() methods {was ./solve.R } ## first for "dgeMatrix" and all kinds of RHS : (m6 <- 1 + as(diag(0:5), "dgeMatrix")) rcond(m6) I6 <- as(diag(6), "dgeMatrix") stopifnot(all.equal(I6, m6 %*% solve(m6)), all.equal(I6, solve(m6) %*% m6) ) (i6 <- solve(m6, Matrix(1:6))) stopifnot(identical(i6, as(cbind(c(-4, rep(1,5))), "dgeMatrix")), identical(i6, solve(m6, 1:6)), identical(i6, solve(m6, matrix(1:6))), identical(i6, solve(m6, matrix(c(1,2,3,4,5,6)))) ) ## solve(<sparse>) (m <- t1+ t(t1) + Diagonal(4)) i.m <- solve(as.mat(m)) I1 <- m %*% i.m o4 <- diag(I1) im <- solve(m)# is now sparse {not yet} (I2 <- m %*% im) (ms <- as(m, "symmetricMatrix")) ## solve(<sparse>, <sparse>): s.mm <- solve(m,m) s.mms <- solve(m, ms) ## these now work "fully-sparse" s.ms2 <- solve(ms, ms) s.msm <- solve(ms, m) I4c <- as(Matrix(diag(4),sparse=TRUE), "generalMatrix") stopifnot(isValid(im, "Matrix"), isValid(I2, "Matrix"), class(I4c) == "dgCMatrix", all.equal(I1, as(I2,"dgeMatrix"), tolerance = 1e-14), all.equal(diag(4), as.mat(I2), tolerance = 1e-12), all.equal(s.mm, I2, tolerance = 1e-14), all.equal(s.mms, I2, tolerance = 1e-14), all.equal(s.ms2, s.msm, tolerance = 4e-15), all.equal(s.ms2, I4c , tolerance = 4e-15), abs(o4 - 1) < 1e-14) image(T125 <- kronecker(kronecker(t5,t5),t5), main = paste("T125:",class(T125))) dim(T3k <- kronecker(t5,kronecker(T125, t5))) system.time(IT3 <- solve(T3k))# incredibly fast I. <- drop0(zapsmall(IT3 %*% T3k)) I.. <- diagN2U(I.) I <- Diagonal(5^5) stopifnot(isValid(IT3, "dtCMatrix"), ## something like the equivalent of all(I. == Diagonal(3125)) : identical(as(I., "diagonalMatrix"), I), identical(as(I..,"diagonalMatrix"), I) ) ###-- row- and column operations {was ./rowcolOps.R } set.seed(321) (m1 <- round(Matrix(rnorm(25), 5), 2)) m1k <- Matrix(round(rnorm(1000), 2), 50, 20) m.m <- as(m1k, "matrix") stopifnot(all.equal(colMeans(m1k), colMeans(m.m)), all.equal(colSums (m1k), colSums (m.m)), all.equal(rowMeans(m1k), rowMeans(m.m)), all.equal(rowSums (m1k), rowSums (m.m))) ###-- kronecker for nonsparse uses Matrix(.): stopifnot(isValid(kr <- kronecker(m1, m6), "Matrix")) assert.EQ.mat(kr, kronecker(as(m1, "matrix"), as(m6, "matrix")), tol = 0) ## sparse: (kt1 <- kronecker(t1, tu)) kt2 <- kronecker(t1c, cu) stopifnot(identical(Matrix:::uniq(kt1), Matrix:::uniq(kt2))) ## but kt1 and kt2, both "dgT" are different since entries are not ordered! ktf <- kronecker(as.matrix(t1), as.matrix(tu)) if(FALSE) # FIXME? our kronecker treats "0 * NA" as "0" for structural-0 assert.EQ.mat(kt2, ktf, tol= 0) (cs1 <- colSums(kt1)) NA.or.True <- function(x) is.na(x) | x eq <- (cs1 == colSums(as(kt1, "matrix"))) stopifnot(NA.or.True(eq), identical(is.na(eq), is.na(cs1))) nt1 <- as(kt1, "nMatrix") # no NA's anymore (ng1 <- as(as(nt1, "generalMatrix"),"CsparseMatrix")) # ngC dg1 <- as(ng1, "dMatrix")# dgC lt1 <- kt1 > 5 nt1 <- as(lt1, "nMatrix") (colSums(nt1, sparseResult = TRUE)) (colSums(kt1, sparseResult = TRUE)) # dsparse, with NA (colSums(lt1, sparseResult = TRUE)) # isparse, with NA (colSums(lt1, sparseResult = TRUE, na.rm = TRUE)) (colSums(nt1, sparseResult = TRUE)) # isparse, no NA ## check correct sparseness of both: for(M in list(kt1, nt1, ng1, dg1, lt1, nt1)) { m <- as(M, "matrix") for(na.rm in c(FALSE,TRUE)) { cs <- colSums(M, na.rm = na.rm) cs. <- colSums(M, na.rm = na.rm, sparseResult = TRUE) rs <- rowSums(M, na.rm = na.rm) rs. <- rowSums(M, na.rm = na.rm, sparseResult = TRUE) stopifnot(isValid(cs., "sparseVector"), identical(cs, as(cs., "vector")), isValid(rs., "sparseVector"), identical(rs, as(rs., "vector")), {eq <- cs == colSums(m, na.rm = na.rm) ; ineq <- is.na(eq) all(ineq | eq) && identical(ineq, is.na(cs)) }, {eq <- rs == rowSums(m, na.rm = na.rm) ; ineq <- is.na(eq) all(ineq | eq) && identical(ineq, is.na(rs)) } ) } } i1 <- cs. == 1 cs2 <- cs. cs2[i1] <- 0 # failed in *-31 !! ## now *index* with a NA-sparseVector : i2 <- i1 ; i2[3] <- NA ; li2 <- as.logical(i2) cs3 <- cs. ; cs3 [i2] <- 0 v3 <- as(cs.,"vector"); v3[li2] <- 0 cs4 <- cs. ; cs4[li2] <- 0 stopifnot(length(i1@x) == 2, identical(li2, as(i2,"vector")), identical(cs3, cs4), cs3 == v3, all(as(v3, "sparseVector") == cs3) ## indexing simple "numeric" with sparseVector: ## see 'R_FIXME' in ../R/sparseVector.R ## , identical(v3[i2], v3[li2]) ## TODO: ## sub-assigning into simple "numeric" with sparseVector index: ) M <- Matrix(c(2:0,1),2); M. <- as(M, "sparseMatrix") (N <- as(crossprod(kronecker(diag(2), M)) > 0, "nMatrix")) (L. <- as(N,"lMatrix")) stopifnot(identical(N, as(L.,"nMatrix")), identical(kronecker( c(1,0), M), kronecker(cbind(1:0), M))) assert.EQ.mat(kronecker(M, c(1,0,0)), kronecker(as.matrix(M), c(1,0,0))) ## coercion from "dpo" or "dsy" xx <- as(xpx, "dsyMatrix") stopifnot(isSymmetric(xxS <- as(xx, "sparseMatrix")), isSymmetric(xpxS <- as(xpx, "sparseMatrix"))) tm <- matrix(0, 8,8) tm[cbind(c(1,1,2,7,8), c(3,6,4,8,8))] <- c(2,-30,15,20,80) (tM <- Matrix(tm)) ## dtC (mM <- Matrix(m <- (tm + t(tm)))) ## dsC mT <- as(mM, "dsTMatrix") gC <- as(as(mT, "dgTMatrix"), "dgCMatrix") lT <- as(Matrix(TRUE, 2,2),"TsparseMatrix") ## Check that mT, lT, and gC print properly : pr.mT <- capture.output(mT) pr.lT <- capture.output(lT)[-(1:2)] nn <- unlist(strsplit(gsub(" +\\.", "", sub("^....", "", pr.mT[-(1:2)])), " ")) stopifnot(as.numeric(nn[nn != ""]) == m[m != 0], identical(1:2, grep("|", pr.lT, fixed=TRUE)), identical(pr.lT, capture.output(as(lT, "nMatrix"))[-(1:2)]), capture.output(gC)[-1] == pr.mT[-1]) assert.EQ.mat(tM, tm, tol=0) assert.EQ.mat(gC, m, tol=0) assert.EQ.mat(mT, m, tol=0) stopifnot(isValid(mM, "dsCMatrix"), isValid(tM, "dtCMatrix") , identical(mT, as(mM, "TsparseMatrix")) , identical(gC, as(mM, "generalMatrix")) ## coercions general <-> symmetric , identical(as(as(mM, "generalMatrix"), "symmetricMatrix"), mM) , identical(as(as(mM, "dgTMatrix"), "symmetricMatrix"), mT) , identical(as(as(tM, "generalMatrix"),"triangularMatrix"), tM) , identical(tM + Diagonal(8), tMD <- Diagonal(8) + tM) , isValid(tMD, "dtCMatrix") ) eM <- eigen(mM) # works thanks to base::as.matrix hack in ../R/zzz.R stopifnot(all.equal(eM$values, { v <- c(162.462112512353, 30.0665927567458) c(v, 15, 0, 0, 160-v[1], -15, -v[2])}, tol=1e-14)) ##--- symmetric -> pos.def. needs valid test: m5 <- Matrix(diag(5) - 1) assertError(as(m5, "dpoMatrix"))# not pos.definite! pm5 <- as(m5, "dspMatrix") # packed assertError(as(pm5, "dppMatrix"))# not pos.definite! sm <- as(Matrix(diag(5) + 1),"dspMatrix") pm <- as(sm,"dpoMatrix")## gave infinite recursion (for a day or so) pp <- as(pm,"dppMatrix") x <- round(100 * crossprod(Matrix(runif(25),5))) D <- Diagonal(5, round(1000*runif(5))) px <- pack(x) stopifnot(is(x, "dpoMatrix"), is(px,"dppMatrix"), is(D, "ddiMatrix")) class(x+D)#--> now "dsyMatrix" stopifnot(is(x+D, "symmetricMatrix"), is(D+px, "dspMatrix"), identical(x+D, D+x), identical(px+D, D+px), identical(pack(x-D), px-D)) tx <- tril(x) ptx <- pack(tx) stopifnot(is(tx, "dtrMatrix"), is(ptx, "dtpMatrix"), is(t(tx), "dtrMatrix"), is(t(ptx), "dtpMatrix"), is(D + tx, "dtrMatrix"), is(tx + D, "dtrMatrix"), is(ptx + D, "dtpMatrix"), is(D + ptx, "dtpMatrix")) ###-- dense nonzero pattern: class(m <- Matrix(TRUE,2,2)) # lsy isValid(n <- as(m, "nMatrix"), "nsyMatrix") ## 1) as(n,"CsparseMatrix") # used to give CHOLMOD error: invalid xtype... ls2 <- as(m, "CsparseMatrix") # works fine ## and really 'm' and 'n' are interally slot identical (!!!) as(n,"sparseMatrix") as(m,"sparseMatrix") ### -- now when starting with nsparse : nT <- new("ngTMatrix", i = as.integer(c(0, 1, 0)), j = as.integer(c(0, 0, 1)), Dim = as.integer(c(2,2))) (nC <- as(nT, "ngCMatrix")) str(nC)# of course, no 'x' slot tt <- as(nT,"denseMatrix") # nge (was lge "wrongly") stopifnot(is(tt,"ngeMatrix"), identical(as(tt, "lMatrix"), as(as(nT, "lMatrix"), "denseMatrix"))) tt as(nC,"denseMatrix") ###-- sparse nonzero pattern : ---------- (nkt <- as(as(as(kt1, "generalMatrix"), "CsparseMatrix"), "ngCMatrix"))# ok dkt <- as(nkt, "denseMatrix") (clt <- crossprod(nkt)) stopifnot(isValid(nkt, "ngCMatrix"), isValid(clt, "nsCMatrix")) suppressWarnings(crossprod(clt)) ## warning "crossprod() of symmetric ..." ## a Csparse with *repeated* entry is not valid! assertError(new("ngCMatrix", p = c(0L,2L), i = c(0L,0L), Dim = 2:1)) ### "d" <-> "l" for (symmetric) sparse : --------------------------------------- suppressWarnings( data(KNex) ) ## may warn, as 'Matrix' is recommended ## and exist more than once at check-time mm <- KNex$mm xpx <- crossprod(mm) ## extract nonzero pattern nxpx <- as(xpx, "nsCMatrix") show(nxpx) ## now ok, since subsetting works r <- nxpx[1:2,] lmm <- as(mm, "lgCMatrix") nmm <- as(lmm, "nMatrix") xlx <- crossprod(lmm) x.x <- crossprod(nmm) ## now A = lxpx and B = xlx should be close, but not quite the same ## since <x,y> = 0 is well possible when x!=0 and y!=0 . ## However, A[i,j] != 0 ==> B[i,j] != 0: A <- as(as(nxpx, "lMatrix"), "TsparseMatrix") B <- as(as(xlx, "lMatrix"), "TsparseMatrix") ij <- function(a) a@i + ncol(a) * a@j stopifnot(all(ij(A) %in% ij(B))) l3 <- upper.tri(matrix(,3,3)) stopifnot(isValid(c3 <- as(l3, "CsparseMatrix"), "CsparseMatrix"),# lgC is(c3, "lMatrix")) (M <- Matrix(l3)) stopifnot(isValid(M, "ltCMatrix"), isValid(M2 <- M %x% M, "triangularMatrix"), # is "dtT" (why not "dtC" ?) dim(M2) == c(9,9), identical(M2, kronecker(M,M))) M3 <- M %x% M2 #ok (cM3 <- colSums(M3, sparse=TRUE)) identical(as.vector(cM3), as(rev(rowSums(M3, sparse=TRUE)), "vector")) M. <- M2 %x% M # gave infinite recursion ## diagonal, sparse & interactions stopifnot(isValid(as(Diagonal(3), "TsparseMatrix"), "TsparseMatrix"), isValid(X <- Diagonal(7) + 1.5 * tM[1:7,1:7], "sparseMatrix"), isValid(X, "triangularMatrix"), isValid(XX <- X - chol(crossprod(X)), "triangularMatrix")) X XX XX <- as(drop0(XX), "dsCMatrix") stopifnot(identical(XX, Matrix(0, nrow(X), ncol(X)))) M <- Matrix(m., sparse = FALSE) (sM <- Matrix(m.)) class(dlM <- M >= 1) stopifnot(identical(dlM, !(M < 1)), isValid(sM, "sparseMatrix"), isValid(dlM, "denseMatrix")) (lM <- as(dlM, "sparseMatrix")) lM2 <- as(dlM, "CsparseMatrix") #-> now ok lM0 <- Matrix:::as_Csparse(dlM) stopifnot(identical3(lM, lM2, lM0)) selectMethod("coerce", c("lgeMatrix", "CsparseMatrix"), useInherited = c(from = TRUE, to = FALSE)) ms0 <- Matrix(c(0,1,1,0), 2,2) ms <- as(ms0, "TsparseMatrix") cs <- as(ms, "CsparseMatrix") ll <- as(ms, "lMatrix") lt <- as(ll, "lgTMatrix") nn <- as(cs, "nsparseMatrix") l2 <- as(cs, "lsparseMatrix") nt <- triu(nn) n3 <- as(nt, "lsparseMatrix") da <- nt + t(nt) dm <- nt * t(nt) + da ## mnt <- as(nt, "matrix") m <- rbind(v <- 2:3) assert.EQ.mat(nt %*% v, mnt %*% v) assert.EQ.mat(v %*% nt, v %*% mnt) assert.EQ.mat( crossprod(nt, v), crossprod(mnt,v)) assert.EQ.mat( crossprod(v, nt), crossprod(v,mnt)) assert.EQ.mat(tcrossprod(v, nt), tcrossprod(v,mnt)) assert.EQ.mat(tcrossprod(nt, m), tcrossprod(mnt, m)) ## stopifnot(isValid(ms, "dsTMatrix"), as(ms0,"matrix") == as(ll, "matrix"), # coercing num |-> log as(lt, "matrix") == as(ll, "matrix"), identical(ms, as(ll, "dMatrix")), identical4(as(ll, "CsparseMatrix"), as(cs, "lMatrix"),# lsC* as(nn, "lsparseMatrix"), l2), identical3(da, dm, as(cs, "generalMatrix")), # dgC* identical(as(da, "lMatrix"), as(lt, "CsparseMatrix")) # lgC* ) ## Dense *packed* ones: s4 <- as(D4, "symmetricMatrix") sp <- as(as(as(D4, "symmetricMatrix"),"denseMatrix"),"dspMatrix") tp <- as(triu(sp),"dtpMatrix") tpL <- as(tril(sp),"dtpMatrix") (spL <- t(sp)) stopifnot(sp @uplo=="U", tp @uplo=="U", spL@uplo=="L", tpL@uplo=="L") ## band(): n <- 4 ; m <- 6 r1 <- Matrix(1:24, n,m) validObject(M1 <- band(r1, 0,0)) (M1 <- as(M1, "sparseMatrix")) r2 <- Matrix(1:18, 3, 6) stopifnot(identical(M1, bandSparse(n,m, k=0, diag = list(diag(r1)))), identical(band(r2, 0,4), band(r2, 0,3) + band(r2, 4,4))) s1 <- as(r1, "sparseMatrix") # such that band(s1) is sparse, too for(k1 in (-n):m) for(k2 in k1:m) { isValid(br1 <- band(r1, k1,k2), "ddenseMatrix") isValid(bs1 <- band(s1, k1,k2), "CsparseMatrix") stopifnot(all(r1 == s1)) } D. <- Diagonal(x= c(-2,3:4)); D.[lower.tri(D.)] <- 1:3 ; D. D0 <- Diagonal(x= 0:3); D0[upper.tri(D0)] <- 1:6 ; D0 stopifnot(all.equal(list(modulus = structure(24, logarithm = FALSE), sign = -1L), unclass(determinant(D.,FALSE)), tol=1e-15), det(Matrix(0,1)) == 0, all.equal(list(modulus = structure(0, logarithm = FALSE), sign = 1L), unclass(determinant(D0,FALSE)), tol=0) ) ### More sparseVector checks: ------------------------------- validObject(new("isparseVector")) R <- sv <- as(D4, "sparseVector") ## dim(<sparseVector>) <- (n1,n2) --> sparse Matrix : dim(R) <- dim(D4) stopifnot(isValid(sv,"sparseVector"), isValid(R, "sparseMatrix"), identical(D4, as(R, "diagonalMatrix"))) iv <- c(rep(0, 5), 3, 0,0,7,0,0,0) sv <- as(iv, "sparseVector") sv. <- as(as.integer(iv), "sparseVector") ## Note: Method with signature "numeric#sparseVector" chosen ... (sv2 <- as(sv, "isparseVector")) ## gave error as(sv, "zsparseVector") stopifnot(identical(sv., sv2), identical( Matrix(sv, 3,4, byrow=TRUE), t(Matrix(sv, 4,3)))) options(warn = 0)# no longer error ## "Large" sparse: n <- 100000 m <- 50000 ; nnz <- 47 M <- spMatrix(n, m, i = sample(n, nnz, replace = TRUE), j = sample(m, nnz, replace = TRUE), x = round(rnorm(nnz),1)) validObject(Mv <- as(M, "sparseVector")) validObject(Dv <- as(Diagonal(60000), "sparseVector")) validObject(LD <- Diagonal(60000, TRUE)) validObject(Lv <- as(LD, "sparseVector")) Dm <- Dv; dim(Dm) <- c(180000L, 20000L) stopifnot(!doExtras || isValid(Md <- M * rowSums(M, sparseResult=TRUE), "sparseMatrix"), LD@diag == "U", isValid(Dm, "sparseMatrix"), identical(Dv, as(Dm, "sparseVector"))) p. <- new("dtCMatrix", i = c(2:3, 2L), p = c(0L, 2:3, 3L, 3L), Dim = c(4L, 4L), x = rep(-0.5, 3), uplo = "L", diag = "U") assert.EQ.mat(solve(solve(p.)), as(p., "matrix")) dimnames(p.)[[1]] <- paste(1:4) ii <- is.na(p.) stopifnot(all(!ii), !any(as(ii, "denseMatrix")))# used to fail lst <- ls() table(istri <- sapply(lst, function(.) is(get(.),"triangularMatrix"))) table(triC <- sapply(lst[istri], function(.) class(get(.)))) table(uniC <- sapply(lst[istri], function(.) get(.)@diag == "U")) lsUtr <- lst[istri][uniC] (di <- sapply(lsUtr, function(.) dim(get(.)))) ## TODO: use %*%, crossprod(), .. on all those 4 x 4 -- and check "triangular rules" r <- tryCatch(chol2inv(Diagonal(x=1:10), pi=pi), warning=identity) stopifnot(grepl("extra argument pi .*chol2inv\\(Diagonal", r$message)) assertError(new("ltrMatrix", Dim = c(2L,2L), x=TRUE))# gave "illegal" object w/o error assertError(new("ntrMatrix", Dim = c(2L,2L)))# dito cat('Time elapsed: ', (.pt <- proc.time()),'\n') # "stats" cat("doExtras:",doExtras,"\n") if(doExtras) { cat("checkMatrix() of all: \n---------\n") Sys.setlocale("LC_COLLATE", "C") # to keep ls() reproducible for(nm in ls()) if(is(.m <- get(nm), "Matrix")) { cat("\n", rep("-",nchar(nm)),"\n",nm, ":\n", sep='') checkMatrix(.m) } cat('Time elapsed: ', proc.time() - .pt,'\n') # "stats" } ## new("nsyMatrix") + new("lgeMatrix") # failed cln <- sort(outer(c("l","n"), paste0(c("ge","sy"), "Matrix"), paste0)) dim(c.c <- as.matrix(expand.grid(cln, cln, KEEP.OUT.ATTRS=FALSE))) # 16 x 2 ## clTry <- function(expr) class(tryCatch(expr, error=identity))[[1]] ## '+' [Arith] failed -- now fixed cbind(c.c, Res = apply(c.c, 1, function(x) class(new(x[1]) + new(x[2])))) ## '<' [Compare] works fine cbind(c.c, Res = apply(c.c, 1, function(x) class(new(x[1]) < new(x[2])))) if(!interactive()) warnings() ## Platform - and other such info -- so we find it in old saved outputs .libPaths() SysI <- Sys.info() structure(Sys.info()[c(4,5,1:3)], class="simple.list") sessionInfo() c(Matrix = packageDescription("Matrix")$Built) if(SysI[["sysname"]] == "Linux" && require("sfsmisc")) local({ nn <- names(.Sc <- sfsmisc::Sys.cpuinfo()) nn <- names(.Sc <- .Sc[nn != "flags"]) print(.Sc[grep("\\.[0-9]$", nn, invert=TRUE)]) })
R-Forge@R-project.org | ViewVC Help |
Powered by ViewVC 1.0.0 |