1 : |
mmaechler |
3186 |
#ifdef __GLIBC__
|
2 : |
mmaechler |
3182 |
// to get strdup declared in glibc (when strict -std=c11 or -stdc99):
|
3 : |
|
|
#define _POSIX_C_SOURCE 200809L
|
4 : |
mmaechler |
3186 |
#endif
|
5 : |
|
|
|
6 : |
mmaechler |
3182 |
#include <string.h>
|
7 : |
|
|
|
8 : |
bates |
478 |
#include "dgCMatrix.h" |
9 : |
bates |
10 |
|
10 : |
maechler |
1747 |
/* for Csparse_transpose() : */
|
11 : |
|
|
#include "Csparse.h" |
12 : |
bates |
922 |
#include "chm_common.h" |
13 : |
mmaechler |
2327 |
/* -> Mutils.h / SPQR ... */
|
14 : |
bates |
922 |
|
15 : |
maechler |
956 |
/* FIXME -- we "forget" about dimnames almost everywhere : */
|
16 : |
|
|
|
17 : |
maechler |
1661 |
/* for dgCMatrix _and_ lgCMatrix and others (but *not* ngC...) : */
|
18 : |
|
|
SEXP xCMatrix_validate(SEXP x)
|
19 : |
bates |
10 |
{
|
20 : |
maechler |
1660 |
/* Almost everything now in Csparse_validate ( ./Csparse.c )
|
21 : |
|
|
* *but* the checking of the 'x' slot : */
|
22 : |
mmaechler |
3268 |
if (xlength(GET_SLOT(x, Matrix_iSym)) !=
|
23 : |
|
|
xlength(GET_SLOT(x, Matrix_xSym)))
|
24 : |
maechler |
1660 |
return mkString(_("lengths of slots 'i' and 'x' must match"));
|
25 : |
maechler |
534 |
|
26 : |
bates |
10 |
return ScalarLogical(1);
|
27 : |
|
|
}
|
28 : |
maechler |
534 |
|
29 : |
maechler |
1968 |
/* for dgRMatrix _and_ lgRMatrix and others (but *not* ngC...) : */
|
30 : |
|
|
SEXP xRMatrix_validate(SEXP x)
|
31 : |
|
|
{
|
32 : |
|
|
/* Almost everything now in Rsparse_validate ( ./Csparse.c )
|
33 : |
|
|
* *but* the checking of the 'x' slot : */
|
34 : |
mmaechler |
3268 |
if (xlength(GET_SLOT(x, Matrix_jSym)) !=
|
35 : |
|
|
xlength(GET_SLOT(x, Matrix_xSym)))
|
36 : |
maechler |
1968 |
return mkString(_("lengths of slots 'j' and 'x' must match"));
|
37 : |
|
|
|
38 : |
|
|
return ScalarLogical(1);
|
39 : |
|
|
}
|
40 : |
|
|
|
41 : |
maechler |
1760 |
/* This and the following R_to_CMatrix() lead to memory-not-mapped seg.faults
|
42 : |
|
|
* only with {32bit + R-devel + enable-R-shlib} -- no idea why */
|
43 : |
maechler |
1747 |
SEXP compressed_to_TMatrix(SEXP x, SEXP colP)
|
44 : |
bates |
10 |
{
|
45 : |
maechler |
890 |
int col = asLogical(colP); /* 1 if "C"olumn compressed; 0 if "R"ow */
|
46 : |
maechler |
1760 |
/* however, for Csparse, we now effectively use the cholmod-based
|
47 : |
|
|
* Csparse_to_Tsparse() in ./Csparse.c ; maybe should simply write
|
48 : |
|
|
* an as_cholmod_Rsparse() function and then do "as there" ...*/
|
49 : |
mmaechler |
3213 |
SEXP indSym = col ? Matrix_iSym : Matrix_jSym, ans,
|
50 : |
|
|
indP = PROTECT(GET_SLOT(x, indSym)),
|
51 : |
|
|
pP = PROTECT(GET_SLOT(x, Matrix_pSym));
|
52 : |
bates |
679 |
int npt = length(pP) - 1;
|
53 : |
bates |
1867 |
char *ncl = strdup(class_P(x));
|
54 : |
mmaechler |
2713 |
static const char *valid[] = { MATRIX_VALID_Csparse, MATRIX_VALID_Rsparse, ""};
|
55 : |
mmaechler |
3147 |
int ctype = R_check_class_etc(x, valid);
|
56 : |
maechler |
1747 |
|
57 : |
|
|
if (ctype < 0)
|
58 : |
bates |
1867 |
error(_("invalid class(x) '%s' in compressed_to_TMatrix(x)"), ncl);
|
59 : |
maechler |
1747 |
|
60 : |
maechler |
1766 |
/* replace 'C' or 'R' with 'T' :*/
|
61 : |
bates |
1763 |
ncl[2] = 'T';
|
62 : |
mmaechler |
3270 |
ans = PROTECT(NEW_OBJECT_OF_CLASS(ncl));
|
63 : |
maechler |
1747 |
|
64 : |
maechler |
1968 |
slot_dup(ans, x, Matrix_DimSym);
|
65 : |
maechler |
1747 |
if((ctype / 3) % 4 != 2) /* not n..Matrix */
|
66 : |
maechler |
1968 |
slot_dup(ans, x, Matrix_xSym);
|
67 : |
maechler |
1747 |
if(ctype % 3) { /* s(ymmetric) or t(riangular) : */
|
68 : |
maechler |
1968 |
slot_dup(ans, x, Matrix_uploSym);
|
69 : |
maechler |
1747 |
if(ctype % 3 == 2) /* t(riangular) : */
|
70 : |
maechler |
1968 |
slot_dup(ans, x, Matrix_diagSym);
|
71 : |
maechler |
1747 |
}
|
72 : |
|
|
SET_DimNames(ans, x);
|
73 : |
mmaechler |
3055 |
// possibly asymmetric for symmetricMatrix is ok
|
74 : |
bates |
677 |
SET_SLOT(ans, indSym, duplicate(indP));
|
75 : |
bates |
679 |
expand_cmprPt(npt, INTEGER(pP),
|
76 : |
|
|
INTEGER(ALLOC_SLOT(ans, col ? Matrix_jSym : Matrix_iSym,
|
77 : |
|
|
INTSXP, length(indP))));
|
78 : |
bates |
1763 |
free(ncl);
|
79 : |
mmaechler |
3213 |
UNPROTECT(3);
|
80 : |
bates |
10 |
return ans;
|
81 : |
|
|
}
|
82 : |
|
|
|
83 : |
maechler |
1747 |
SEXP R_to_CMatrix(SEXP x)
|
84 : |
|
|
{
|
85 : |
|
|
SEXP ans, tri = PROTECT(allocVector(LGLSXP, 1));
|
86 : |
bates |
1867 |
char *ncl = strdup(class_P(x));
|
87 : |
mmaechler |
2713 |
static const char *valid[] = { MATRIX_VALID_Rsparse, ""};
|
88 : |
mmaechler |
3147 |
int ctype = R_check_class_etc(x, valid);
|
89 : |
maechler |
1747 |
int *x_dims = INTEGER(GET_SLOT(x, Matrix_DimSym)), *a_dims;
|
90 : |
mmaechler |
2455 |
PROTECT_INDEX ipx;
|
91 : |
maechler |
1747 |
|
92 : |
|
|
if (ctype < 0)
|
93 : |
bates |
1867 |
error(_("invalid class(x) '%s' in R_to_CMatrix(x)"), ncl);
|
94 : |
maechler |
1747 |
|
95 : |
maechler |
1766 |
/* replace 'R' with 'C' : */
|
96 : |
|
|
ncl[2] = 'C';
|
97 : |
mmaechler |
3270 |
PROTECT_WITH_INDEX(ans = NEW_OBJECT_OF_CLASS(ncl), &ipx);
|
98 : |
maechler |
1766 |
|
99 : |
maechler |
1747 |
a_dims = INTEGER(ALLOC_SLOT(ans, Matrix_DimSym, INTSXP, 2));
|
100 : |
|
|
/* reversed dim() since we will transpose: */
|
101 : |
|
|
a_dims[0] = x_dims[1];
|
102 : |
|
|
a_dims[1] = x_dims[0];
|
103 : |
|
|
|
104 : |
|
|
/* triangular: */ LOGICAL(tri)[0] = 0;
|
105 : |
|
|
if((ctype / 3) != 2) /* not n..Matrix */
|
106 : |
maechler |
1968 |
slot_dup(ans, x, Matrix_xSym);
|
107 : |
maechler |
1747 |
if(ctype % 3) { /* s(ymmetric) or t(riangular) : */
|
108 : |
maechler |
1968 |
SET_SLOT(ans, Matrix_uploSym,
|
109 : |
|
|
mkString((*uplo_P(x) == 'U') ? "L" : "U"));
|
110 : |
maechler |
1747 |
if(ctype % 3 == 2) { /* t(riangular) : */
|
111 : |
|
|
LOGICAL(tri)[0] = 1;
|
112 : |
maechler |
1968 |
slot_dup(ans, x, Matrix_diagSym);
|
113 : |
maechler |
1747 |
}
|
114 : |
|
|
}
|
115 : |
|
|
SET_SLOT(ans, Matrix_iSym, duplicate(GET_SLOT(x, Matrix_jSym)));
|
116 : |
maechler |
1968 |
slot_dup(ans, x, Matrix_pSym);
|
117 : |
mmaechler |
2455 |
REPROTECT(ans = Csparse_transpose(ans, tri), ipx);
|
118 : |
maechler |
1747 |
SET_DimNames(ans, x);
|
119 : |
mmaechler |
3055 |
// possibly asymmetric for symmetricMatrix is ok
|
120 : |
maechler |
1771 |
free(ncl);
|
121 : |
maechler |
1747 |
UNPROTECT(2);
|
122 : |
|
|
return ans;
|
123 : |
|
|
}
|
124 : |
|
|
|
125 : |
mmaechler |
2814 |
/** Return a 2 column matrix '' cbind(i, j) '' of 0-origin index vectors (i,j)
|
126 : |
|
|
* which entirely correspond to the (i,j) slots of
|
127 : |
|
|
* as(x, "TsparseMatrix") :
|
128 : |
|
|
*/
|
129 : |
maechler |
919 |
SEXP compressed_non_0_ij(SEXP x, SEXP colP)
|
130 : |
|
|
{
|
131 : |
|
|
int col = asLogical(colP); /* 1 if "C"olumn compressed; 0 if "R"ow */
|
132 : |
|
|
SEXP ans, indSym = col ? Matrix_iSym : Matrix_jSym;
|
133 : |
mmaechler |
3213 |
SEXP indP = PROTECT(GET_SLOT(x, indSym)),
|
134 : |
|
|
pP = PROTECT(GET_SLOT(x, Matrix_pSym));
|
135 : |
mmaechler |
2236 |
int i, *ij;
|
136 : |
dmbates |
2759 |
int nouter = INTEGER(GET_SLOT(x, Matrix_DimSym))[col ? 1 : 0],
|
137 : |
|
|
n_el = INTEGER(pP)[nouter]; /* is only == length(indP), if the
|
138 : |
|
|
inner slot is not over-allocated */
|
139 : |
maechler |
919 |
|
140 : |
|
|
ij = INTEGER(ans = PROTECT(allocMatrix(INTSXP, n_el, 2)));
|
141 : |
|
|
/* expand the compressed margin to 'i' or 'j' : */
|
142 : |
dmbates |
2759 |
expand_cmprPt(nouter, INTEGER(pP), &ij[col ? n_el : 0]);
|
143 : |
maechler |
919 |
/* and copy the other one: */
|
144 : |
|
|
if (col)
|
145 : |
|
|
for(i = 0; i < n_el; i++)
|
146 : |
|
|
ij[i] = INTEGER(indP)[i];
|
147 : |
|
|
else /* row compressed */
|
148 : |
|
|
for(i = 0; i < n_el; i++)
|
149 : |
|
|
ij[i + n_el] = INTEGER(indP)[i];
|
150 : |
|
|
|
151 : |
mmaechler |
3213 |
UNPROTECT(3);
|
152 : |
maechler |
919 |
return ans;
|
153 : |
|
|
}
|
154 : |
|
|
|
155 : |
dmbates |
2401 |
#if 0 /* unused */
|
156 : |
bates |
1380 |
SEXP dgCMatrix_lusol(SEXP x, SEXP y)
|
157 : |
bates |
332 |
{
|
158 : |
mmaechler |
2237 |
SEXP ycp = PROTECT((TYPEOF(y) == REALSXP) ?
|
159 : |
|
|
duplicate(y) : coerceVector(y, REALSXP));
|
160 : |
mmaechler |
2227 |
CSP xc = AS_CSP__(x);
|
161 : |
maechler |
1960 |
R_CheckStack();
|
162 : |
bates |
310 |
|
163 : |
bates |
1380 |
if (xc->m != xc->n || xc->m <= 0)
|
164 : |
|
|
error(_("dgCMatrix_lusol requires a square, non-empty matrix"));
|
165 : |
mmaechler |
2237 |
if (LENGTH(ycp) != xc->m)
|
166 : |
bates |
1380 |
error(_("Dimensions of system to be solved are inconsistent"));
|
167 : |
bates |
1383 |
if (!cs_lusol(/*order*/ 1, xc, REAL(ycp), /*tol*/ 1e-7))
|
168 : |
bates |
1380 |
error(_("cs_lusol failed"));
|
169 : |
maechler |
1960 |
|
170 : |
bates |
1380 |
UNPROTECT(1);
|
171 : |
|
|
return ycp;
|
172 : |
|
|
}
|
173 : |
dmbates |
2401 |
#endif
|
174 : |
bates |
332 |
|
175 : |
mmaechler |
2978 |
// called from package MatrixModels's R code
|
176 : |
mmaechler |
2239 |
SEXP dgCMatrix_qrsol(SEXP x, SEXP y, SEXP ord)
|
177 : |
bates |
1380 |
{
|
178 : |
mmaechler |
2529 |
/* FIXME: extend this to work in multivariate case, i.e. y a matrix with > 1 column ! */
|
179 : |
mmaechler |
2237 |
SEXP ycp = PROTECT((TYPEOF(y) == REALSXP) ?
|
180 : |
|
|
duplicate(y) : coerceVector(y, REALSXP));
|
181 : |
|
|
CSP xc = AS_CSP(x); /* <--> x may be dgC* or dtC* */
|
182 : |
mmaechler |
3033 |
int order = asInteger(ord);
|
183 : |
mmaechler |
2529 |
#ifdef _not_yet_do_FIXME__
|
184 : |
|
|
const char *nms[] = {"L", "coef", "Xty", "resid", ""};
|
185 : |
mmaechler |
2645 |
SEXP ans = PROTECT(Rf_mkNamed(VECSXP, nms));
|
186 : |
mmaechler |
2529 |
#endif
|
187 : |
maechler |
1960 |
R_CheckStack();
|
188 : |
bates |
1380 |
|
189 : |
mmaechler |
2239 |
if (order < 0 || order > 3)
|
190 : |
mmaechler |
2529 |
error(_("dgCMatrix_qrsol(., order) needs order in {0,..,3}"));
|
191 : |
mmaechler |
2239 |
/* --> cs_amd() --- order 0: natural, 1: Chol, 2: LU, 3: QR */
|
192 : |
|
|
if (LENGTH(ycp) != xc->m)
|
193 : |
|
|
error(_("Dimensions of system to be solved are inconsistent"));
|
194 : |
|
|
/* FIXME? Note that qr_sol() would allow *under-determined systems;
|
195 : |
mmaechler |
2529 |
* In general, we'd need LENGTH(ycp) = max(n,m)
|
196 : |
|
|
* FIXME also: multivariate y (see above)
|
197 : |
mmaechler |
2239 |
*/
|
198 : |
bates |
1380 |
if (xc->m < xc->n || xc->n <= 0)
|
199 : |
mmaechler |
2237 |
error(_("dgCMatrix_qrsol(<%d x %d>-matrix) requires a 'tall' rectangular matrix"),
|
200 : |
|
|
xc->m, xc->n);
|
201 : |
mmaechler |
2239 |
|
202 : |
|
|
/* cs_qrsol(): Tim Davis (2006) .. "8.2 Using a QR factorization", p.136f , calling
|
203 : |
|
|
* ------- cs_sqr(order, ..), see p.76 */
|
204 : |
mmaechler |
2529 |
/* MM: FIXME: write our *OWN* version of - the first case (m >= n) - of cs_qrsol()
|
205 : |
|
|
* --------- which will (1) work with a *multivariate* y
|
206 : |
|
|
* (2) compute coefficients properly, not overwriting RHS
|
207 : |
|
|
*/
|
208 : |
mmaechler |
2239 |
if (!cs_qrsol(order, xc, REAL(ycp)))
|
209 : |
|
|
/* return value really is 0 or 1 - no more info there */
|
210 : |
mmaechler |
2529 |
error(_("cs_qrsol() failed inside dgCMatrix_qrsol()"));
|
211 : |
maechler |
1960 |
|
212 : |
mmaechler |
2239 |
/* Solution is only in the first part of ycp -- cut its length back to n : */
|
213 : |
mmaechler |
3161 |
ycp = lengthgets(ycp, (R_xlen_t) xc->n);
|
214 : |
mmaechler |
2879 |
|
215 : |
bates |
332 |
UNPROTECT(1);
|
216 : |
bates |
1380 |
return ycp;
|
217 : |
bates |
332 |
}
|
218 : |
bates |
1380 |
|
219 : |
mmaechler |
2854 |
// Modified version of Tim Davis's cs_qr_mex.c file for MATLAB (in CSparse)
|
220 : |
|
|
// Usage: [V,beta,p,R,q] = cs_qr(A) ;
|
221 : |
mmaechler |
3115 |
SEXP dgCMatrix_QR(SEXP Ap, SEXP order, SEXP keep_dimnames)
|
222 : |
bates |
1380 |
{
|
223 : |
mmaechler |
2227 |
CSP A = AS_CSP__(Ap), D;
|
224 : |
mmaechler |
2854 |
int io = INTEGER(order)[0];
|
225 : |
mmaechler |
2933 |
Rboolean verbose = (io < 0);// verbose=TRUE, encoded with negative 'order'
|
226 : |
mmaechler |
3115 |
int m0 = A->m, m = m0, n = A->n, ord = asLogical(order) ? 3 : 0, *p;
|
227 : |
maechler |
1960 |
R_CheckStack();
|
228 : |
bates |
1380 |
|
229 : |
mmaechler |
2387 |
if (m < n) error(_("A must have #{rows} >= #{columns}")) ;
|
230 : |
mmaechler |
3273 |
SEXP ans = PROTECT(NEW_OBJECT_OF_CLASS("sparseQR"));
|
231 : |
mmaechler |
2854 |
int *dims = INTEGER(ALLOC_SLOT(ans, Matrix_DimSym, INTSXP, 2));
|
232 : |
maechler |
2106 |
dims[0] = m; dims[1] = n;
|
233 : |
mmaechler |
2854 |
css *S = cs_sqr(ord, A, 1); /* symbolic QR ordering & analysis*/
|
234 : |
mmaechler |
2387 |
if (!S) error(_("cs_sqr failed"));
|
235 : |
mmaechler |
3115 |
int keep_dimnms = asLogical(keep_dimnames);
|
236 : |
|
|
if(keep_dimnms == NA_LOGICAL) { keep_dimnms = TRUE;
|
237 : |
|
|
warning(_("dgcMatrix_QR(*, keep_dimnames = NA): NA taken as TRUE"));
|
238 : |
|
|
}
|
239 : |
mmaechler |
2854 |
if(verbose && S->m2 > m) // in ./cs.h , m2 := # of rows for QR, after adding fictitious rows
|
240 : |
|
|
Rprintf("Symbolic QR(): Matrix structurally rank deficient (m2-m = %d)\n",
|
241 : |
|
|
S->m2 - m);
|
242 : |
|
|
csn *N = cs_qr(A, S); /* numeric QR factorization */
|
243 : |
mmaechler |
2387 |
if (!N) error(_("cs_qr failed")) ;
|
244 : |
bates |
1381 |
cs_dropzeros(N->L); /* drop zeros from V and sort */
|
245 : |
mmaechler |
2854 |
D = cs_transpose(N->L, 1); cs_spfree(N->L);
|
246 : |
|
|
N->L = cs_transpose(D, 1); cs_spfree(D);
|
247 : |
bates |
1381 |
cs_dropzeros(N->U); /* drop zeros from R and sort */
|
248 : |
mmaechler |
2854 |
D = cs_transpose(N->U, 1); cs_spfree(N->U) ;
|
249 : |
|
|
N->U = cs_transpose(D, 1); cs_spfree(D);
|
250 : |
bates |
1381 |
m = N->L->m; /* m may be larger now */
|
251 : |
mmaechler |
2854 |
// MM: m := S->m2 also counting the ficticious rows (Tim Davis, p.72, 74f)
|
252 : |
bates |
1383 |
p = cs_pinv(S->pinv, m); /* p = pinv' */
|
253 : |
mmaechler |
3115 |
SEXP dn = R_NilValue; Rboolean do_dn = FALSE;
|
254 : |
|
|
if(keep_dimnms) {
|
255 : |
|
|
dn = GET_SLOT(Ap, Matrix_DimNamesSym);
|
256 : |
|
|
do_dn = !isNull(VECTOR_ELT(dn, 0)) && m == m0;
|
257 : |
|
|
// FIXME? also deal with case m > m0 ?
|
258 : |
|
|
if(do_dn) { // keep rownames
|
259 : |
|
|
dn = PROTECT(duplicate(dn));
|
260 : |
|
|
SET_VECTOR_ELT(dn, 1, R_NilValue);
|
261 : |
|
|
} else dn = R_NilValue;
|
262 : |
|
|
}
|
263 : |
|
|
SET_SLOT(ans, Matrix_VSym, Matrix_cs_to_SEXP(N->L, "dgCMatrix", 0, dn)); // "V"
|
264 : |
|
|
Memcpy(REAL(ALLOC_SLOT(ans, Matrix_betaSym, REALSXP, n)), N->B, n);
|
265 : |
|
|
Memcpy(INTEGER(ALLOC_SLOT(ans, Matrix_pSym, INTSXP, m)), p, m);
|
266 : |
|
|
if(do_dn) {
|
267 : |
|
|
UNPROTECT(1); // dn
|
268 : |
|
|
dn = R_NilValue; do_dn = FALSE;
|
269 : |
|
|
}
|
270 : |
|
|
if (ord) {
|
271 : |
|
|
Memcpy(INTEGER(ALLOC_SLOT(ans, install("q"), INTSXP, n)), S->q, n);
|
272 : |
|
|
if(keep_dimnms) {
|
273 : |
|
|
dn = GET_SLOT(Ap, Matrix_DimNamesSym);
|
274 : |
|
|
do_dn = !isNull(VECTOR_ELT(dn, 1));
|
275 : |
|
|
if(do_dn) {
|
276 : |
|
|
dn = PROTECT(duplicate(dn));
|
277 : |
|
|
// permute colnames by S->q : cn <- cn[ S->q ] :
|
278 : |
|
|
SEXP cns = PROTECT(duplicate(VECTOR_ELT(dn, 1)));
|
279 : |
|
|
for(int j=0; j < n; j++)
|
280 : |
|
|
SET_STRING_ELT(VECTOR_ELT(dn, 1), j, STRING_ELT(cns, S->q[j]));
|
281 : |
|
|
UNPROTECT(1);
|
282 : |
|
|
SET_VECTOR_ELT(dn, 0, R_NilValue);
|
283 : |
|
|
} else dn = R_NilValue;
|
284 : |
|
|
}
|
285 : |
|
|
} else
|
286 : |
bates |
1397 |
ALLOC_SLOT(ans, install("q"), INTSXP, 0);
|
287 : |
mmaechler |
3115 |
SET_SLOT(ans, install("R"), Matrix_cs_to_SEXP(N->U, "dgCMatrix", 0, dn));
|
288 : |
|
|
if(do_dn) UNPROTECT(1); // dn
|
289 : |
bates |
1380 |
cs_nfree(N);
|
290 : |
|
|
cs_sfree(S);
|
291 : |
|
|
cs_free(p);
|
292 : |
|
|
UNPROTECT(1);
|
293 : |
|
|
return ans;
|
294 : |
|
|
}
|
295 : |
|
|
|
296 : |
mmaechler |
2336 |
#ifdef Matrix_with_SPQR
|
297 : |
dmbates |
2276 |
/**
|
298 : |
|
|
* Return a SuiteSparse QR factorization of the sparse matrix A
|
299 : |
|
|
*
|
300 : |
mmaechler |
2322 |
* @param Ap (pointer to) a [m x n] dgCMatrix
|
301 : |
|
|
* @param ordering integer SEXP specifying the ordering strategy to be used
|
302 : |
|
|
* see SPQR/Include/SuiteSparseQR_definitions.h
|
303 : |
|
|
* @param econ integer SEXP ("economy"): number of rows of R and columns of Q
|
304 : |
|
|
* to return. The default is m. Using n gives the standard economy form.
|
305 : |
|
|
* A value less than the estimated rank r is set to r, so econ=0 gives the
|
306 : |
|
|
* "rank-sized" factorization, where nrow(R)==nnz(diag(R))==r.
|
307 : |
mmaechler |
2327 |
* @param tol double SEXP: if tol <= -2 use SPQR's default,
|
308 : |
|
|
* if -2 < tol < 0, then no tol is used; otherwise,
|
309 : |
|
|
* tol > 0, use as tolerance: columns with 2-norm <= tol treated as 0
|
310 : |
dmbates |
2276 |
*
|
311 : |
mmaechler |
2327 |
*
|
312 : |
|
|
* @return SEXP "SPQR" object with slots (Q, R, p, rank, Dim):
|
313 : |
mmaechler |
2322 |
* Q: dgCMatrix; R: dgCMatrix [subject to change to dtCMatrix FIXME ?]
|
314 : |
mmaechler |
2327 |
* p: integer: 0-based permutation (or length 0 <=> identity);
|
315 : |
|
|
* rank: integer, the "revealed" rank Dim: integer, original matrix dim.
|
316 : |
dmbates |
2276 |
*/
|
317 : |
mmaechler |
2322 |
SEXP dgCMatrix_SPQR(SEXP Ap, SEXP ordering, SEXP econ, SEXP tol)
|
318 : |
dmbates |
2276 |
{
|
319 : |
mmaechler |
2327 |
/* SEXP ans = PROTECT(allocVector(VECSXP, 4)); */
|
320 : |
mmaechler |
3273 |
SEXP ans = PROTECT(NEW_OBJECT_OF_CLASS("SPQR"));
|
321 : |
mmaechler |
2327 |
|
322 : |
dmbates |
2299 |
CHM_SP A = AS_CHM_SP(Ap), Q, R;
|
323 : |
mmaechler |
3001 |
SuiteSparse_long *E, rank;/* not always = int FIXME (Windows_64 ?) */
|
324 : |
mmaechler |
2322 |
|
325 : |
|
|
if ((rank = SuiteSparseQR_C_QR(asInteger(ordering),
|
326 : |
|
|
asReal(tol),/* originally had SPQR_DEFAULT_TOL */
|
327 : |
mmaechler |
3001 |
(SuiteSparse_long)asInteger(econ),/* originally had 0 */
|
328 : |
mmaechler |
2661 |
A, &Q, &R, &E, &cl)) == -1)
|
329 : |
dmbates |
2276 |
error(_("SuiteSparseQR_C_QR returned an error code"));
|
330 : |
mmaechler |
2327 |
|
331 : |
mmaechler |
3011 |
slot_dup(ans, Ap, Matrix_DimSym);
|
332 : |
mmaechler |
2327 |
/* SET_VECTOR_ELT(ans, 0, */
|
333 : |
|
|
/* chm_sparse_to_SEXP(Q, 0, 0, 0, "", R_NilValue)); */
|
334 : |
|
|
SET_SLOT(ans, install("Q"),
|
335 : |
|
|
chm_sparse_to_SEXP(Q, 0, 0, 0, "", R_NilValue));
|
336 : |
|
|
|
337 : |
mmaechler |
2322 |
/* Also gives a dgCMatrix (not a dtC* *triangular*) :
|
338 : |
|
|
* may make sense if to be used in the "spqr_solve" routines .. ?? */
|
339 : |
mmaechler |
2327 |
/* SET_VECTOR_ELT(ans, 1, */
|
340 : |
|
|
/* chm_sparse_to_SEXP(R, 0, 0, 0, "", R_NilValue)); */
|
341 : |
|
|
SET_SLOT(ans, install("R"),
|
342 : |
|
|
chm_sparse_to_SEXP(R, 0, 0, 0, "", R_NilValue));
|
343 : |
mmaechler |
2661 |
cholmod_free_sparse(&Al, &cl);
|
344 : |
|
|
cholmod_free_sparse(&R, &cl);
|
345 : |
|
|
cholmod_free_sparse(&Q, &cl);
|
346 : |
dmbates |
2276 |
if (E) {
|
347 : |
mmaechler |
2661 |
int *Er;
|
348 : |
|
|
SET_VECTOR_ELT(ans, 2, allocVector(INTSXP, A->ncol));
|
349 : |
|
|
Er = INTEGER(VECTOR_ELT(ans, 2));
|
350 : |
|
|
for (int i = 0; i < A->ncol; i++) Er[i] = (int) E[i];
|
351 : |
dmbates |
2276 |
Free(E);
|
352 : |
mmaechler |
2661 |
} else SET_VECTOR_ELT(ans, 2, allocVector(INTSXP, 0));
|
353 : |
|
|
SET_VECTOR_ELT(ans, 3, ScalarInteger((int)rank));
|
354 : |
dmbates |
2276 |
UNPROTECT(1);
|
355 : |
|
|
return ans;
|
356 : |
|
|
}
|
357 : |
mmaechler |
2338 |
#endif
|
358 : |
|
|
/* Matrix_with_SPQR */
|
359 : |
dmbates |
2276 |
|
360 : |
bates |
1463 |
/* Modified version of Tim Davis's cs_lu_mex.c file for MATLAB */
|
361 : |
mmaechler |
3115 |
void install_lu(SEXP Ap, int order, double tol, Rboolean err_sing, Rboolean keep_dimnms)
|
362 : |
bates |
1383 |
{
|
363 : |
mmaechler |
2713 |
// (order, tol) == (1, 1) by default, when called from R.
|
364 : |
dmbates |
2401 |
SEXP ans;
|
365 : |
bates |
1383 |
css *S;
|
366 : |
|
|
csn *N;
|
367 : |
dmbates |
2401 |
int n, *p, *dims;
|
368 : |
|
|
CSP A = AS_CSP__(Ap), D;
|
369 : |
maechler |
1960 |
R_CheckStack();
|
370 : |
bates |
1383 |
|
371 : |
bates |
1385 |
n = A->n;
|
372 : |
bates |
1383 |
if (A->m != n)
|
373 : |
mmaechler |
2387 |
error(_("LU decomposition applies only to square matrices"));
|
374 : |
bates |
1383 |
if (order) { /* not using natural order */
|
375 : |
|
|
order = (tol == 1) ? 2 /* amd(S'*S) w/dense rows or I */
|
376 : |
|
|
: 1; /* amd (A+A'), or natural */
|
377 : |
|
|
}
|
378 : |
mmaechler |
2713 |
S = cs_sqr(order, A, /*qr = */ 0); /* symbolic ordering */
|
379 : |
dmbates |
2401 |
N = cs_lu(A, S, tol); /* numeric factorization */
|
380 : |
mmaechler |
2488 |
if (!N) {
|
381 : |
|
|
if(err_sing)
|
382 : |
|
|
error(_("cs_lu(A) failed: near-singular A (or out of memory)"));
|
383 : |
|
|
else {
|
384 : |
|
|
/* No warning: The useR should be careful :
|
385 : |
mmaechler |
2692 |
* Put NA into "LU" factor */
|
386 : |
mmaechler |
2488 |
set_factors(Ap, ScalarLogical(NA_LOGICAL), "LU");
|
387 : |
|
|
return;
|
388 : |
|
|
}
|
389 : |
|
|
}
|
390 : |
dmbates |
2401 |
cs_dropzeros(N->L); /* drop zeros from L and sort it */
|
391 : |
|
|
D = cs_transpose(N->L, 1);
|
392 : |
|
|
cs_spfree(N->L);
|
393 : |
|
|
N->L = cs_transpose(D, 1);
|
394 : |
|
|
cs_spfree(D);
|
395 : |
|
|
cs_dropzeros(N->U); /* drop zeros from U and sort it */
|
396 : |
|
|
D = cs_transpose(N->U, 1);
|
397 : |
|
|
cs_spfree(N->U);
|
398 : |
|
|
N->U = cs_transpose(D, 1);
|
399 : |
|
|
cs_spfree(D);
|
400 : |
|
|
p = cs_pinv(N->pinv, n); /* p=pinv' */
|
401 : |
mmaechler |
3273 |
ans = PROTECT(NEW_OBJECT_OF_CLASS("sparseLU"));
|
402 : |
mmaechler |
2268 |
dims = INTEGER(ALLOC_SLOT(ans, Matrix_DimSym, INTSXP, 2));
|
403 : |
|
|
dims[0] = n; dims[1] = n;
|
404 : |
mmaechler |
3115 |
SEXP dn; Rboolean do_dn = FALSE;
|
405 : |
|
|
if(keep_dimnms) {
|
406 : |
|
|
dn = GET_SLOT(Ap, Matrix_DimNamesSym);
|
407 : |
|
|
do_dn = !isNull(VECTOR_ELT(dn, 0));
|
408 : |
|
|
if(do_dn) {
|
409 : |
|
|
dn = PROTECT(duplicate(dn));
|
410 : |
|
|
// permute rownames by p : rn <- rn[ p ] :
|
411 : |
|
|
SEXP rn = PROTECT(duplicate(VECTOR_ELT(dn, 0)));
|
412 : |
|
|
for(int i=0; i < n; i++)
|
413 : |
|
|
SET_STRING_ELT(VECTOR_ELT(dn, 0), i, STRING_ELT(rn, p[i]));
|
414 : |
|
|
UNPROTECT(1); // rn
|
415 : |
|
|
SET_VECTOR_ELT(dn, 1, R_NilValue); // colnames(.) := NULL
|
416 : |
|
|
}
|
417 : |
|
|
}
|
418 : |
bates |
1383 |
SET_SLOT(ans, install("L"),
|
419 : |
mmaechler |
3115 |
Matrix_cs_to_SEXP(N->L, "dtCMatrix", 0, do_dn ? dn : R_NilValue));
|
420 : |
|
|
|
421 : |
|
|
if(keep_dimnms) {
|
422 : |
|
|
if(do_dn) {
|
423 : |
|
|
UNPROTECT(1); // dn
|
424 : |
|
|
dn = GET_SLOT(Ap, Matrix_DimNamesSym);
|
425 : |
|
|
}
|
426 : |
|
|
do_dn = !isNull(VECTOR_ELT(dn, 1));
|
427 : |
|
|
if(do_dn) {
|
428 : |
|
|
dn = PROTECT(duplicate(dn));
|
429 : |
|
|
if(order) { // permute colnames by S->q : cn <- cn[ S->q ] :
|
430 : |
|
|
SEXP cn = PROTECT(duplicate(VECTOR_ELT(dn, 1)));
|
431 : |
|
|
for(int j=0; j < n; j++)
|
432 : |
|
|
SET_STRING_ELT(VECTOR_ELT(dn, 1), j, STRING_ELT(cn, S->q[j]));
|
433 : |
|
|
UNPROTECT(1); // cn
|
434 : |
|
|
}
|
435 : |
|
|
SET_VECTOR_ELT(dn, 0, R_NilValue); // rownames(.) := NULL
|
436 : |
|
|
}
|
437 : |
|
|
}
|
438 : |
bates |
1383 |
SET_SLOT(ans, install("U"),
|
439 : |
mmaechler |
3115 |
Matrix_cs_to_SEXP(N->U, "dtCMatrix", 0, do_dn ? dn : R_NilValue));
|
440 : |
|
|
if(do_dn) UNPROTECT(1); // dn
|
441 : |
mmaechler |
2247 |
Memcpy(INTEGER(ALLOC_SLOT(ans, Matrix_pSym, /* "p" */
|
442 : |
bates |
1383 |
INTSXP, n)), p, n);
|
443 : |
|
|
if (order)
|
444 : |
|
|
Memcpy(INTEGER(ALLOC_SLOT(ans, install("q"),
|
445 : |
|
|
INTSXP, n)), S->q, n);
|
446 : |
|
|
cs_nfree(N);
|
447 : |
|
|
cs_sfree(S);
|
448 : |
|
|
cs_free(p);
|
449 : |
|
|
UNPROTECT(1);
|
450 : |
dmbates |
2401 |
set_factors(Ap, ans, "LU");
|
451 : |
bates |
1385 |
}
|
452 : |
|
|
|
453 : |
mmaechler |
3115 |
SEXP dgCMatrix_LU(SEXP Ap, SEXP orderp, SEXP tolp, SEXP error_on_sing, SEXP keep_dimnames)
|
454 : |
dmbates |
2401 |
{
|
455 : |
|
|
SEXP ans;
|
456 : |
mmaechler |
2488 |
Rboolean err_sing = asLogical(error_on_sing);
|
457 : |
dmbates |
2401 |
/* FIXME: dgCMatrix_LU should check ans for consistency in
|
458 : |
|
|
* permutation type with the requested value - Should have two
|
459 : |
|
|
* classes or two different names in the factors list for LU with
|
460 : |
|
|
* permuted columns or not.
|
461 : |
|
|
* OTOH, currently (order, tol) === (1, 1) always.
|
462 : |
dmbates |
2403 |
* It is true that length(LU@q) does flag the order argument.
|
463 : |
dmbates |
2401 |
*/
|
464 : |
|
|
if (!isNull(ans = get_factors(Ap, "LU")))
|
465 : |
|
|
return ans;
|
466 : |
mmaechler |
3115 |
int keep_dimnms = asLogical(keep_dimnames);
|
467 : |
|
|
if(keep_dimnms == NA_LOGICAL) { keep_dimnms = TRUE;
|
468 : |
|
|
warning(_("dgcMatrix_LU(*, keep_dimnames = NA): NA taken as TRUE"));
|
469 : |
|
|
}
|
470 : |
|
|
install_lu(Ap, asInteger(orderp), asReal(tolp), err_sing, keep_dimnms);
|
471 : |
dmbates |
2401 |
return get_factors(Ap, "LU");
|
472 : |
|
|
}
|
473 : |
|
|
|
474 : |
mmaechler |
2889 |
SEXP dgCMatrix_matrix_solve(SEXP Ap, SEXP b, SEXP give_sparse)
|
475 : |
mmaechler |
3115 |
// FIXME: add 'keep_dimnames' as argument
|
476 : |
bates |
1385 |
{
|
477 : |
mmaechler |
2889 |
Rboolean sparse = asLogical(give_sparse);
|
478 : |
|
|
if(sparse) {
|
479 : |
|
|
// FIXME: implement this
|
480 : |
|
|
error(_("dgCMatrix_matrix_solve(.., sparse=TRUE) not yet implemented"));
|
481 : |
|
|
|
482 : |
|
|
/* Idea: in the for(j = 0; j < nrhs ..) loop below, build the *sparse* result matrix
|
483 : |
|
|
* ----- *column* wise -- which is perfect for dgCMatrix
|
484 : |
|
|
* --> build (i,p,x) slots "increasingly" [well, allocate in batches ..]
|
485 : |
|
|
*
|
486 : |
|
|
* --> maybe first a protoype in R
|
487 : |
|
|
*/
|
488 : |
|
|
|
489 : |
|
|
}
|
490 : |
dmbates |
2401 |
SEXP ans = PROTECT(dup_mMatrix_as_dgeMatrix(b)),
|
491 : |
|
|
lu, qslot;
|
492 : |
|
|
CSP L, U;
|
493 : |
|
|
int *bdims = INTEGER(GET_SLOT(ans, Matrix_DimSym)), *p, *q;
|
494 : |
bates |
1385 |
int j, n = bdims[0], nrhs = bdims[1];
|
495 : |
mmaechler |
3105 |
double *x, *ax = REAL(GET_SLOT(ans, Matrix_xSym));
|
496 : |
|
|
C_or_Alloca_TO(x, n, double);
|
497 : |
bates |
1385 |
|
498 : |
dmbates |
2401 |
if (isNull(lu = get_factors(Ap, "LU"))) {
|
499 : |
mmaechler |
3115 |
install_lu(Ap, /* order = */ 1, /* tol = */ 1.0, /* err_sing = */ TRUE,
|
500 : |
|
|
/* keep_dimnames = */ TRUE);
|
501 : |
dmbates |
2401 |
lu = get_factors(Ap, "LU");
|
502 : |
|
|
}
|
503 : |
|
|
qslot = GET_SLOT(lu, install("q"));
|
504 : |
|
|
L = AS_CSP__(GET_SLOT(lu, install("L")));
|
505 : |
|
|
U = AS_CSP__(GET_SLOT(lu, install("U")));
|
506 : |
|
|
R_CheckStack();
|
507 : |
mmaechler |
3011 |
if (U->n != n)
|
508 : |
|
|
error(_("Dimensions of system to be solved are inconsistent"));
|
509 : |
|
|
if(nrhs >= 1 && n >= 1) {
|
510 : |
|
|
p = INTEGER(GET_SLOT(lu, Matrix_pSym));
|
511 : |
|
|
q = LENGTH(qslot) ? INTEGER(qslot) : (int *) NULL;
|
512 : |
dmbates |
2401 |
|
513 : |
mmaechler |
3011 |
for (j = 0; j < nrhs; j++) {
|
514 : |
|
|
cs_pvec(p, ax + j * n, x, n); /* x = b(p) */
|
515 : |
|
|
cs_lsolve(L, x); /* x = L\x */
|
516 : |
|
|
cs_usolve(U, x); /* x = U\x */
|
517 : |
mmaechler |
3023 |
if (q) /* r(q) = x , hence
|
518 : |
|
|
r = Q' U{^-1} L{^-1} P b = A^{-1} b */
|
519 : |
mmaechler |
3011 |
cs_ipvec(q, x, ax + j * n, n);
|
520 : |
|
|
else
|
521 : |
|
|
Memcpy(ax + j * n, x, n);
|
522 : |
|
|
}
|
523 : |
bates |
1385 |
}
|
524 : |
mmaechler |
3105 |
if(n >= SMALL_4_Alloca) Free(x);
|
525 : |
dmbates |
2401 |
UNPROTECT(1);
|
526 : |
bates |
1383 |
return ans;
|
527 : |
|
|
}
|
528 : |
bates |
1385 |
|
529 : |
mmaechler |
2978 |
// called from package MatrixModels's R code:
|
530 : |
bates |
1895 |
SEXP dgCMatrix_cholsol(SEXP x, SEXP y)
|
531 : |
|
|
{
|
532 : |
mmaechler |
2239 |
/* Solve Sparse Least Squares X %*% beta ~= y with dense RHS y,
|
533 : |
|
|
* where X = t(x) i.e. we pass x = t(X) as argument,
|
534 : |
|
|
* via "Cholesky(X'X)" .. well not really:
|
535 : |
|
|
* cholmod_factorize("x", ..) finds L in X'X = L'L directly */
|
536 : |
mmaechler |
2237 |
CHM_SP cx = AS_CHM_SP(x);
|
537 : |
mmaechler |
2529 |
/* FIXME: extend this to work in multivariate case, i.e. y a matrix with > 1 column ! */
|
538 : |
mmaechler |
3276 |
SEXP y_ = PROTECT(coerceVector(y, REALSXP));
|
539 : |
|
|
CHM_DN cy = AS_CHM_DN(y_), rhs, cAns, resid;
|
540 : |
maechler |
1960 |
CHM_FR L;
|
541 : |
mmaechler |
2529 |
int n = cx->ncol;/* #{obs.} {x = t(X) !} */
|
542 : |
|
|
double one[] = {1,0}, zero[] = {0,0}, neg1[] = {-1,0};
|
543 : |
|
|
const char *nms[] = {"L", "coef", "Xty", "resid", ""};
|
544 : |
mmaechler |
2645 |
SEXP ans = PROTECT(Rf_mkNamed(VECSXP, nms));
|
545 : |
maechler |
1960 |
R_CheckStack();
|
546 : |
bates |
1895 |
|
547 : |
mmaechler |
2529 |
if (n < cx->nrow || n <= 0)
|
548 : |
bates |
1895 |
error(_("dgCMatrix_cholsol requires a 'short, wide' rectangular matrix"));
|
549 : |
mmaechler |
2529 |
if (cy->nrow != n)
|
550 : |
bates |
1895 |
error(_("Dimensions of system to be solved are inconsistent"));
|
551 : |
mmaechler |
2661 |
rhs = cholmod_allocate_dense(cx->nrow, 1, cx->nrow, CHOLMOD_REAL, &c);
|
552 : |
mmaechler |
2529 |
/* cholmod_sdmult(A, transp, alpha, beta, X, Y, &c):
|
553 : |
|
|
* Y := alpha*(A*X) + beta*Y or alpha*(A'*X) + beta*Y ;
|
554 : |
|
|
* here: rhs := 1 * x %*% y + 0 = x %*% y = X'y */
|
555 : |
mmaechler |
2661 |
if (!(cholmod_sdmult(cx, 0 /* trans */, one, zero, cy, rhs, &c)))
|
556 : |
|
|
error(_("cholmod_sdmult error (rhs)"));
|
557 : |
|
|
L = cholmod_analyze(cx, &c);
|
558 : |
|
|
if (!cholmod_factorize(cx, L, &c))
|
559 : |
|
|
error(_("cholmod_factorize failed: status %d, minor %d from ncol %d"),
|
560 : |
bates |
1895 |
c.status, L->minor, L->n);
|
561 : |
|
|
/* FIXME: Do this in stages so an "effects" vector can be calculated */
|
562 : |
mmaechler |
2661 |
if (!(cAns = cholmod_solve(CHOLMOD_A, L, rhs, &c)))
|
563 : |
|
|
error(_("cholmod_solve (CHOLMOD_A) failed: status %d, minor %d from ncol %d"),
|
564 : |
bates |
1895 |
c.status, L->minor, L->n);
|
565 : |
mmaechler |
2529 |
/* L : */
|
566 : |
bates |
1895 |
SET_VECTOR_ELT(ans, 0, chm_factor_to_SEXP(L, 0));
|
567 : |
mmaechler |
2529 |
/* coef : */
|
568 : |
bates |
1895 |
SET_VECTOR_ELT(ans, 1, allocVector(REALSXP, cx->nrow));
|
569 : |
|
|
Memcpy(REAL(VECTOR_ELT(ans, 1)), (double*)(cAns->x), cx->nrow);
|
570 : |
mmaechler |
2529 |
/* X'y : */
|
571 : |
bates |
1895 |
/* FIXME: Change this when the "effects" vector is available */
|
572 : |
|
|
SET_VECTOR_ELT(ans, 2, allocVector(REALSXP, cx->nrow));
|
573 : |
mmaechler |
2527 |
Memcpy(REAL(VECTOR_ELT(ans, 2)), (double*)(rhs->x), cx->nrow);
|
574 : |
mmaechler |
2529 |
/* resid := y */
|
575 : |
mmaechler |
2661 |
resid = cholmod_copy_dense(cy, &c);
|
576 : |
mmaechler |
2529 |
/* cholmod_sdmult(A, transp, alp, bet, X, Y, &c):
|
577 : |
|
|
* Y := alp*(A*X) + bet*Y or alp*(A'*X) + beta*Y ;
|
578 : |
|
|
* here: resid := -1 * x' %*% coef + 1 * y = y - X %*% coef */
|
579 : |
mmaechler |
2661 |
if (!(cholmod_sdmult(cx, 1/* trans */, neg1, one, cAns, resid, &c)))
|
580 : |
|
|
error(_("cholmod_sdmult error (resid)"));
|
581 : |
mmaechler |
2529 |
/* FIXME: for multivariate case, i.e. resid *matrix* with > 1 column ! */
|
582 : |
|
|
SET_VECTOR_ELT(ans, 3, allocVector(REALSXP, n));
|
583 : |
|
|
Memcpy(REAL(VECTOR_ELT(ans, 3)), (double*)(resid->x), n);
|
584 : |
bates |
1895 |
|
585 : |
mmaechler |
2661 |
cholmod_free_factor(&L, &c);
|
586 : |
|
|
cholmod_free_dense(&rhs, &c);
|
587 : |
|
|
cholmod_free_dense(&cAns, &c);
|
588 : |
mmaechler |
3276 |
UNPROTECT(2);
|
589 : |
bates |
1895 |
return ans;
|
590 : |
|
|
}
|
591 : |
bates |
1901 |
|
592 : |
|
|
|
593 : |
maechler |
2015 |
/* Define all of
|
594 : |
maechler |
1911 |
* dgCMatrix_colSums(....)
|
595 : |
|
|
* igCMatrix_colSums(....)
|
596 : |
maechler |
2015 |
* lgCMatrix_colSums_d(....)
|
597 : |
|
|
* lgCMatrix_colSums_i(....)
|
598 : |
|
|
* ngCMatrix_colSums_d(....)
|
599 : |
|
|
* ngCMatrix_colSums_i(....)
|
600 : |
maechler |
1911 |
*/
|
601 : |
maechler |
1920 |
#define _dgC_
|
602 : |
|
|
#include "t_gCMatrix_colSums.c" |
603 : |
bates |
1901 |
|
604 : |
maechler |
1920 |
#define _igC_
|
605 : |
|
|
#include "t_gCMatrix_colSums.c" |
606 : |
bates |
1901 |
|
607 : |
maechler |
1920 |
#define _lgC_
|
608 : |
|
|
#include "t_gCMatrix_colSums.c" |
609 : |
maechler |
1911 |
|
610 : |
maechler |
1920 |
#define _ngC_
|
611 : |
|
|
#include "t_gCMatrix_colSums.c" |
612 : |
maechler |
1911 |
|
613 : |
maechler |
1920 |
#define _lgC_mn
|
614 : |
|
|
#include "t_gCMatrix_colSums.c" |
615 : |
maechler |
1911 |
|
616 : |
maechler |
1920 |
#define _ngC_mn
|
617 : |
|
|
#include "t_gCMatrix_colSums.c" |
618 : |
maechler |
1911 |
|
619 : |
|
|
|
620 : |
maechler |
1920 |
SEXP lgCMatrix_colSums(SEXP x, SEXP NArm, SEXP spRes, SEXP trans, SEXP means)
|
621 : |
|
|
{
|
622 : |
|
|
if(asLogical(means)) /* ==> result will be "double" / "dsparseVector" */
|
623 : |
|
|
return lgCMatrix_colSums_d(x, NArm, spRes, trans, means);
|
624 : |
|
|
else
|
625 : |
|
|
return lgCMatrix_colSums_i(x, NArm, spRes, trans, means);
|
626 : |
|
|
}
|
627 : |
maechler |
1911 |
|
628 : |
maechler |
1920 |
SEXP ngCMatrix_colSums(SEXP x, SEXP NArm, SEXP spRes, SEXP trans, SEXP means)
|
629 : |
|
|
{
|
630 : |
|
|
if(asLogical(means)) /* ==> result will be "double" / "dsparseVector" */
|
631 : |
|
|
return ngCMatrix_colSums_d(x, NArm, spRes, trans, means);
|
632 : |
|
|
else
|
633 : |
|
|
return ngCMatrix_colSums_i(x, NArm, spRes, trans, means);
|
634 : |
|
|
}
|