1 |
/* Sparse matrices in compressed column-oriented form */ |
/** @file Csparse.c |
2 |
|
* The "CsparseMatrix" class from R package Matrix: |
3 |
|
* |
4 |
|
* Sparse matrices in compressed column-oriented form |
5 |
|
*/ |
6 |
#include "Csparse.h" |
#include "Csparse.h" |
7 |
#include "Tsparse.h" |
#include "Tsparse.h" |
8 |
#include "chm_common.h" |
#include "chm_common.h" |
40 |
return Csparse_validate_(x, FALSE); |
return Csparse_validate_(x, FALSE); |
41 |
} |
} |
42 |
|
|
|
SEXP Csparse_validate2(SEXP x, SEXP maybe_modify) { |
|
|
return Csparse_validate_(x, asLogical(maybe_modify)); |
|
|
} |
|
43 |
|
|
44 |
SEXP Csparse_validate_(SEXP x, Rboolean maybe_modify) |
#define _t_Csparse_validate |
45 |
{ |
#include "t_Csparse_validate.c" |
|
/* NB: we do *NOT* check a potential 'x' slot here, at all */ |
|
|
SEXP pslot = GET_SLOT(x, Matrix_pSym), |
|
|
islot = GET_SLOT(x, Matrix_iSym); |
|
|
Rboolean sorted, strictly; |
|
|
int j, k, |
|
|
*dims = INTEGER(GET_SLOT(x, Matrix_DimSym)), |
|
|
nrow = dims[0], |
|
|
ncol = dims[1], |
|
|
*xp = INTEGER(pslot), |
|
|
*xi = INTEGER(islot); |
|
46 |
|
|
47 |
if (length(pslot) != dims[1] + 1) |
#define _t_Csparse_sort |
48 |
return mkString(_("slot p must have length = ncol(.) + 1")); |
#include "t_Csparse_validate.c" |
|
if (xp[0] != 0) |
|
|
return mkString(_("first element of slot p must be zero")); |
|
|
if (length(islot) < xp[ncol]) /* allow larger slots from over-allocation!*/ |
|
|
return |
|
|
mkString(_("last element of slot p must match length of slots i and x")); |
|
|
for (j = 0; j < xp[ncol]; j++) { |
|
|
if (xi[j] < 0 || xi[j] >= nrow) |
|
|
return mkString(_("all row indices must be between 0 and nrow-1")); |
|
|
} |
|
|
sorted = TRUE; strictly = TRUE; |
|
|
for (j = 0; j < ncol; j++) { |
|
|
if (xp[j] > xp[j + 1]) |
|
|
return mkString(_("slot p must be non-decreasing")); |
|
|
if(sorted) /* only act if >= 2 entries in column j : */ |
|
|
for (k = xp[j] + 1; k < xp[j + 1]; k++) { |
|
|
if (xi[k] < xi[k - 1]) |
|
|
sorted = FALSE; |
|
|
else if (xi[k] == xi[k - 1]) |
|
|
strictly = FALSE; |
|
|
} |
|
|
} |
|
|
if (!sorted) { |
|
|
if(maybe_modify) { |
|
|
CHM_SP chx = (CHM_SP) alloca(sizeof(cholmod_sparse)); |
|
|
R_CheckStack(); |
|
|
as_cholmod_sparse(chx, x, FALSE, TRUE);/*-> cholmod_l_sort() ! */ |
|
|
/* as chx = AS_CHM_SP__(x) but ^^^^ sorting x in_place !!! */ |
|
49 |
|
|
50 |
/* Now re-check that row indices are *strictly* increasing |
// R: .validateCsparse(x, sort.if.needed = FALSE) : |
51 |
* (and not just increasing) within each column : */ |
SEXP Csparse_validate2(SEXP x, SEXP maybe_modify) { |
52 |
for (j = 0; j < ncol; j++) { |
return Csparse_validate_(x, asLogical(maybe_modify)); |
|
for (k = xp[j] + 1; k < xp[j + 1]; k++) |
|
|
if (xi[k] == xi[k - 1]) |
|
|
return mkString(_("slot i is not *strictly* increasing inside a column (even after cholmod_l_sort)")); |
|
|
} |
|
|
} else { /* no modifying sorting : */ |
|
|
return mkString(_("row indices are not sorted within columns")); |
|
|
} |
|
|
} else if(!strictly) { /* sorted, but not strictly */ |
|
|
return mkString(_("slot i is not *strictly* increasing inside a column")); |
|
53 |
} |
} |
54 |
return ScalarLogical(1); |
|
55 |
|
// R: Matrix:::.sortCsparse(x) : |
56 |
|
SEXP Csparse_sort (SEXP x) { |
57 |
|
int ok = Csparse_sort_2(x, TRUE); // modifying x directly |
58 |
|
if(!ok) warning(_("Csparse_sort(x): x is not a valid (apart from sorting) CsparseMatrix")); |
59 |
|
return x; |
60 |
} |
} |
61 |
|
|
62 |
SEXP Rsparse_validate(SEXP x) |
SEXP Rsparse_validate(SEXP x) |
96 |
} |
} |
97 |
} |
} |
98 |
if (!sorted) |
if (!sorted) |
99 |
/* cannot easily use cholmod_l_sort(.) ... -> "error out" :*/ |
/* cannot easily use cholmod_sort(.) ... -> "error out" :*/ |
100 |
return mkString(_("slot j is not increasing inside a column")); |
return mkString(_("slot j is not increasing inside a column")); |
101 |
else if(!strictly) /* sorted, but not strictly */ |
else if(!strictly) /* sorted, but not strictly */ |
102 |
return mkString(_("slot j is not *strictly* increasing inside a column")); |
return mkString(_("slot j is not *strictly* increasing inside a column")); |
104 |
return ScalarLogical(1); |
return ScalarLogical(1); |
105 |
} |
} |
106 |
|
|
107 |
|
/** @brief From a CsparseMatrix, produce a dense one. |
108 |
/* Called from ../R/Csparse.R : */ |
* |
109 |
/* Can only return [dln]geMatrix (no symm/triang); |
* Directly deals with symmetric, triangular and general. |
110 |
* FIXME: replace by non-CHOLMOD code ! */ |
* Called from ../R/Csparse.R's C2dense() |
111 |
SEXP Csparse_to_dense(SEXP x) |
* |
112 |
|
* @param x a CsparseMatrix: currently all 9 of "[dln][gst]CMatrix" |
113 |
|
* @param symm_or_tri integer (NA, < 0, > 0, = 0) specifying the knowledge of the caller about x: |
114 |
|
* NA : unknown => will be determined |
115 |
|
* = 0 : "generalMatrix" (not symm or tri); |
116 |
|
* < 0 : "triangularMatrix" |
117 |
|
* > 0 : "symmetricMatrix" |
118 |
|
* |
119 |
|
* @return a "denseMatrix" |
120 |
|
*/ |
121 |
|
SEXP Csparse_to_dense(SEXP x, SEXP symm_or_tri) |
122 |
{ |
{ |
123 |
CHM_SP chxs = AS_CHM_SP__(x); |
Rboolean is_sym, is_tri; |
124 |
/* This loses the symmetry property, since cholmod_dense has none, |
int is_sym_or_tri = asInteger(symm_or_tri), |
125 |
|
ctype = 0; // <- default = "dgC" |
126 |
|
static const char *valid[] = { MATRIX_VALID_Csparse, ""}; |
127 |
|
if(is_sym_or_tri == NA_INTEGER) { // find if is(x, "symmetricMatrix") : |
128 |
|
ctype = Matrix_check_class_etc(x, valid); |
129 |
|
is_sym = (ctype % 3 == 1); |
130 |
|
is_tri = (ctype % 3 == 2); |
131 |
|
} else { |
132 |
|
is_sym = is_sym_or_tri > 0; |
133 |
|
is_tri = is_sym_or_tri < 0; |
134 |
|
// => both are FALSE iff is_.. == 0 |
135 |
|
if(is_sym || is_tri) |
136 |
|
ctype = Matrix_check_class_etc(x, valid); |
137 |
|
} |
138 |
|
CHM_SP chxs = AS_CHM_SP__(x);// -> chxs->stype = +- 1 <==> symmetric |
139 |
|
R_CheckStack(); |
140 |
|
if(is_tri && *diag_P(x) == 'U') { // ==> x := diagU2N(x), directly for chxs |
141 |
|
CHM_SP eye = cholmod_speye(chxs->nrow, chxs->ncol, chxs->xtype, &c); |
142 |
|
double one[] = {1, 0}; |
143 |
|
CHM_SP ans = cholmod_add(chxs, eye, one, one, |
144 |
|
/* values: */ ((ctype / 3) != 2), // TRUE iff not "nMatrix" |
145 |
|
TRUE, &c); |
146 |
|
cholmod_free_sparse(&eye, &c); |
147 |
|
chxs = cholmod_copy_sparse(ans, &c); |
148 |
|
cholmod_free_sparse(&ans, &c); |
149 |
|
} |
150 |
|
/* The following loses the symmetry property, since cholmod_dense has none, |
151 |
* BUT, much worse (FIXME!), it also transforms CHOLMOD_PATTERN ("n") matrices |
* BUT, much worse (FIXME!), it also transforms CHOLMOD_PATTERN ("n") matrices |
152 |
* to numeric (CHOLMOD_REAL) ones : */ |
* to numeric (CHOLMOD_REAL) ones {and we "revert" via chm_dense_to_SEXP()}: */ |
153 |
CHM_DN chxd = cholmod_l_sparse_to_dense(chxs, &c); |
CHM_DN chxd = cholmod_sparse_to_dense(chxs, &c); |
154 |
int Rkind = (chxs->xtype == CHOLMOD_PATTERN)? -1 : Real_kind(x); |
int Rkind = (chxs->xtype == CHOLMOD_PATTERN)? -1 : Real_kind(x); |
|
R_CheckStack(); |
|
155 |
|
|
156 |
return chm_dense_to_SEXP(chxd, 1, Rkind, GET_SLOT(x, Matrix_DimNamesSym)); |
SEXP ans = chm_dense_to_SEXP(chxd, 1, Rkind, GET_SLOT(x, Matrix_DimNamesSym), |
157 |
|
/* transp: */ FALSE); |
158 |
|
// -> a [dln]geMatrix |
159 |
|
if(is_sym) { // ==> want [dln]syMatrix |
160 |
|
const char cl1 = class_P(ans)[0]; |
161 |
|
PROTECT(ans); |
162 |
|
SEXP aa = PROTECT(NEW_OBJECT(MAKE_CLASS((cl1 == 'd') ? "dsyMatrix" : |
163 |
|
((cl1 == 'l') ? "lsyMatrix" : "nsyMatrix")))); |
164 |
|
// No need to duplicate() as slots of ans are freshly allocated and ans will not be used |
165 |
|
SET_SLOT(aa, Matrix_xSym, GET_SLOT(ans, Matrix_xSym)); |
166 |
|
SET_SLOT(aa, Matrix_DimSym, GET_SLOT(ans, Matrix_DimSym)); |
167 |
|
SET_SLOT(aa, Matrix_DimNamesSym,GET_SLOT(ans, Matrix_DimNamesSym)); |
168 |
|
SET_SLOT(aa, Matrix_uploSym, mkString((chxs->stype > 0) ? "U" : "L")); |
169 |
|
UNPROTECT(2); |
170 |
|
return aa; |
171 |
|
} |
172 |
|
else if(is_tri) { // ==> want [dln]trMatrix |
173 |
|
const char cl1 = class_P(ans)[0]; |
174 |
|
PROTECT(ans); |
175 |
|
SEXP aa = PROTECT(NEW_OBJECT(MAKE_CLASS((cl1 == 'd') ? "dtrMatrix" : |
176 |
|
((cl1 == 'l') ? "ltrMatrix" : "ntrMatrix")))); |
177 |
|
// No need to duplicate() as slots of ans are freshly allocated and ans will not be used |
178 |
|
SET_SLOT(aa, Matrix_xSym, GET_SLOT(ans, Matrix_xSym)); |
179 |
|
SET_SLOT(aa, Matrix_DimSym, GET_SLOT(ans, Matrix_DimSym)); |
180 |
|
SET_SLOT(aa, Matrix_DimNamesSym,GET_SLOT(ans, Matrix_DimNamesSym)); |
181 |
|
slot_dup(aa, x, Matrix_uploSym); |
182 |
|
/* already by NEW_OBJECT(..) above: |
183 |
|
SET_SLOT(aa, Matrix_diagSym, mkString("N")); */ |
184 |
|
UNPROTECT(2); |
185 |
|
return aa; |
186 |
|
} |
187 |
|
else |
188 |
|
return ans; |
189 |
} |
} |
190 |
|
|
191 |
SEXP Csparse_to_nz_pattern(SEXP x, SEXP tri) |
// FIXME: do not go via CHM (should not be too hard, to just *drop* the x-slot, right? |
192 |
|
SEXP Csparse2nz(SEXP x, Rboolean tri) |
193 |
{ |
{ |
194 |
CHM_SP chxs = AS_CHM_SP__(x); |
CHM_SP chxs = AS_CHM_SP__(x); |
195 |
CHM_SP chxcp = cholmod_l_copy(chxs, chxs->stype, CHOLMOD_PATTERN, &c); |
CHM_SP chxcp = cholmod_copy(chxs, chxs->stype, CHOLMOD_PATTERN, &c); |
|
int tr = asLogical(tri); |
|
196 |
R_CheckStack(); |
R_CheckStack(); |
197 |
|
|
198 |
return chm_sparse_to_SEXP(chxcp, 1/*do_free*/, |
return chm_sparse_to_SEXP(chxcp, 1/*do_free*/, |
199 |
tr ? ((*uplo_P(x) == 'U') ? 1 : -1) : 0, |
tri ? ((*uplo_P(x) == 'U') ? 1 : -1) : 0, |
200 |
0, tr ? diag_P(x) : "", |
/* Rkind: pattern */ 0, |
201 |
|
/* diag = */ tri ? diag_P(x) : "", |
202 |
GET_SLOT(x, Matrix_DimNamesSym)); |
GET_SLOT(x, Matrix_DimNamesSym)); |
203 |
} |
} |
204 |
|
SEXP Csparse_to_nz_pattern(SEXP x, SEXP tri) |
205 |
|
{ |
206 |
|
int tr_ = asLogical(tri); |
207 |
|
if(tr_ == NA_LOGICAL) { |
208 |
|
warning(_("Csparse_to_nz_pattern(x, tri = NA): 'tri' is taken as TRUE")); |
209 |
|
tr_ = TRUE; |
210 |
|
} |
211 |
|
return Csparse2nz(x, (Rboolean) tr_); |
212 |
|
} |
213 |
|
|
214 |
SEXP Csparse_to_matrix(SEXP x) |
// n.CMatrix --> [dli].CMatrix (not going through CHM!) |
215 |
|
SEXP nz_pattern_to_Csparse(SEXP x, SEXP res_kind) |
216 |
{ |
{ |
217 |
return chm_dense_to_matrix(cholmod_l_sparse_to_dense(AS_CHM_SP__(x), &c), |
return nz2Csparse(x, asInteger(res_kind)); |
218 |
1 /*do_free*/, GET_SLOT(x, Matrix_DimNamesSym)); |
} |
219 |
|
|
220 |
|
// n.CMatrix --> [dli].CMatrix (not going through CHM!) |
221 |
|
// NOTE: use chm_MOD_xtype(() to change type of 'cholmod_sparse' matrix |
222 |
|
SEXP nz2Csparse(SEXP x, enum x_slot_kind r_kind) |
223 |
|
{ |
224 |
|
const char *cl_x = class_P(x); |
225 |
|
// quick check - if ok, fast |
226 |
|
if(cl_x[0] != 'n' || cl_x[2] != 'C') { |
227 |
|
// e.g. class = "A", from setClass("A", contains = "ngCMatrix") |
228 |
|
static const char *valid[] = { MATRIX_VALID_nCsparse, ""}; |
229 |
|
int ctype = Matrix_check_class_etc(x, valid); |
230 |
|
if(ctype < 0) |
231 |
|
error(_("not a 'n.CMatrix'")); |
232 |
|
else // fine : get a valid cl_x class_P()-like string : |
233 |
|
cl_x = valid[ctype]; |
234 |
|
} |
235 |
|
int nnz = LENGTH(GET_SLOT(x, Matrix_iSym)); |
236 |
|
SEXP ans; |
237 |
|
char *ncl = alloca(strlen(cl_x) + 1); /* not much memory required */ |
238 |
|
strcpy(ncl, cl_x); |
239 |
|
double *dx_x; int *ix_x; |
240 |
|
ncl[0] = (r_kind == x_double ? 'd' : |
241 |
|
(r_kind == x_logical ? 'l' : |
242 |
|
/* else (for now): r_kind == x_integer : */ 'i')); |
243 |
|
PROTECT(ans = NEW_OBJECT(MAKE_CLASS(ncl))); |
244 |
|
// create a correct 'x' slot: |
245 |
|
switch(r_kind) { |
246 |
|
int i; |
247 |
|
case x_double: // 'd' |
248 |
|
dx_x = REAL(ALLOC_SLOT(ans, Matrix_xSym, REALSXP, nnz)); |
249 |
|
for (i=0; i < nnz; i++) dx_x[i] = 1.; |
250 |
|
break; |
251 |
|
case x_logical: // 'l' |
252 |
|
ix_x = LOGICAL(ALLOC_SLOT(ans, Matrix_xSym, LGLSXP, nnz)); |
253 |
|
for (i=0; i < nnz; i++) ix_x[i] = TRUE; |
254 |
|
break; |
255 |
|
case x_integer: // 'i' |
256 |
|
ix_x = INTEGER(ALLOC_SLOT(ans, Matrix_xSym, INTSXP, nnz)); |
257 |
|
for (i=0; i < nnz; i++) ix_x[i] = 1; |
258 |
|
break; |
259 |
|
|
260 |
|
default: |
261 |
|
error(_("nz2Csparse(): invalid/non-implemented r_kind = %d"), |
262 |
|
r_kind); |
263 |
|
} |
264 |
|
|
265 |
|
// now copy all other slots : |
266 |
|
slot_dup(ans, x, Matrix_iSym); |
267 |
|
slot_dup(ans, x, Matrix_pSym); |
268 |
|
slot_dup(ans, x, Matrix_DimSym); |
269 |
|
slot_dup(ans, x, Matrix_DimNamesSym); |
270 |
|
if(ncl[1] != 'g') { // symmetric or triangular ... |
271 |
|
slot_dup_if_has(ans, x, Matrix_uploSym); |
272 |
|
slot_dup_if_has(ans, x, Matrix_diagSym); |
273 |
|
} |
274 |
|
UNPROTECT(1); |
275 |
|
return ans; |
276 |
|
} |
277 |
|
|
278 |
|
SEXP Csparse_to_matrix(SEXP x, SEXP chk, SEXP symm) |
279 |
|
{ |
280 |
|
int is_sym = asLogical(symm); |
281 |
|
if(is_sym == NA_LOGICAL) { // find if is(x, "symmetricMatrix") : |
282 |
|
static const char *valid[] = { MATRIX_VALID_Csparse, ""}; |
283 |
|
int ctype = Matrix_check_class_etc(x, valid); |
284 |
|
is_sym = (ctype % 3 == 1); |
285 |
|
} |
286 |
|
return chm_dense_to_matrix( |
287 |
|
cholmod_sparse_to_dense(AS_CHM_SP2(x, asLogical(chk)), &c), |
288 |
|
1 /*do_free*/, |
289 |
|
(is_sym |
290 |
|
? symmetric_DimNames(GET_SLOT(x, Matrix_DimNamesSym)) |
291 |
|
: GET_SLOT(x, Matrix_DimNamesSym))); |
292 |
|
} |
293 |
|
|
294 |
|
SEXP Csparse_to_vector(SEXP x) |
295 |
|
{ |
296 |
|
return chm_dense_to_vector(cholmod_sparse_to_dense(AS_CHM_SP__(x), &c), 1); |
297 |
} |
} |
298 |
|
|
299 |
SEXP Csparse_to_Tsparse(SEXP x, SEXP tri) |
SEXP Csparse_to_Tsparse(SEXP x, SEXP tri) |
300 |
{ |
{ |
301 |
CHM_SP chxs = AS_CHM_SP__(x); |
CHM_SP chxs = AS_CHM_SP__(x); |
302 |
CHM_TR chxt = cholmod_l_sparse_to_triplet(chxs, &c); |
CHM_TR chxt = cholmod_sparse_to_triplet(chxs, &c); |
303 |
int tr = asLogical(tri); |
int tr = asLogical(tri); |
304 |
int Rkind = (chxs->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0; |
int Rkind = (chxs->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0; |
305 |
R_CheckStack(); |
R_CheckStack(); |
310 |
GET_SLOT(x, Matrix_DimNamesSym)); |
GET_SLOT(x, Matrix_DimNamesSym)); |
311 |
} |
} |
312 |
|
|
313 |
/* this used to be called sCMatrix_to_gCMatrix(..) [in ./dsCMatrix.c ]: */ |
SEXP Csparse_to_tCsparse(SEXP x, SEXP uplo, SEXP diag) |
314 |
|
{ |
315 |
|
CHM_SP chxs = AS_CHM_SP__(x); |
316 |
|
int Rkind = (chxs->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0; |
317 |
|
R_CheckStack(); |
318 |
|
return chm_sparse_to_SEXP(chxs, /* dofree = */ 0, |
319 |
|
/* uploT = */ (*CHAR(asChar(uplo)) == 'U')? 1: -1, |
320 |
|
Rkind, /* diag = */ CHAR(STRING_ELT(diag, 0)), |
321 |
|
GET_SLOT(x, Matrix_DimNamesSym)); |
322 |
|
} |
323 |
|
|
324 |
|
SEXP Csparse_to_tTsparse(SEXP x, SEXP uplo, SEXP diag) |
325 |
|
{ |
326 |
|
CHM_SP chxs = AS_CHM_SP__(x); |
327 |
|
CHM_TR chxt = cholmod_sparse_to_triplet(chxs, &c); |
328 |
|
int Rkind = (chxs->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0; |
329 |
|
R_CheckStack(); |
330 |
|
return chm_triplet_to_SEXP(chxt, 1, |
331 |
|
/* uploT = */ (*CHAR(asChar(uplo)) == 'U')? 1: -1, |
332 |
|
Rkind, /* diag = */ CHAR(STRING_ELT(diag, 0)), |
333 |
|
GET_SLOT(x, Matrix_DimNamesSym)); |
334 |
|
} |
335 |
|
|
336 |
|
|
337 |
SEXP Csparse_symmetric_to_general(SEXP x) |
SEXP Csparse_symmetric_to_general(SEXP x) |
338 |
{ |
{ |
339 |
CHM_SP chx = AS_CHM_SP__(x), chgx; |
CHM_SP chx = AS_CHM_SP__(x), chgx; |
342 |
|
|
343 |
if (!(chx->stype)) |
if (!(chx->stype)) |
344 |
error(_("Nonsymmetric matrix in Csparse_symmetric_to_general")); |
error(_("Nonsymmetric matrix in Csparse_symmetric_to_general")); |
345 |
chgx = cholmod_l_copy(chx, /* stype: */ 0, chx->xtype, &c); |
chgx = cholmod_copy(chx, /* stype: */ 0, chx->xtype, &c); |
346 |
/* xtype: pattern, "real", complex or .. */ |
/* xtype: pattern, "real", complex or .. */ |
347 |
return chm_sparse_to_SEXP(chgx, 1, 0, Rkind, "", |
return chm_sparse_to_SEXP(chgx, 1, 0, Rkind, "", |
348 |
GET_SLOT(x, Matrix_DimNamesSym)); |
symmetric_DimNames(GET_SLOT(x, Matrix_DimNamesSym))); |
349 |
} |
} |
350 |
|
|
351 |
SEXP Csparse_general_to_symmetric(SEXP x, SEXP uplo) |
SEXP Csparse_general_to_symmetric(SEXP x, SEXP uplo, SEXP sym_dmns) |
352 |
{ |
{ |
353 |
|
int *adims = INTEGER(GET_SLOT(x, Matrix_DimSym)), n = adims[0]; |
354 |
|
if(n != adims[1]) { |
355 |
|
error(_("Csparse_general_to_symmetric(): matrix is not square!")); |
356 |
|
return R_NilValue; /* -Wall */ |
357 |
|
} |
358 |
CHM_SP chx = AS_CHM_SP__(x), chgx; |
CHM_SP chx = AS_CHM_SP__(x), chgx; |
359 |
int uploT = (*CHAR(STRING_ELT(uplo,0)) == 'U') ? 1 : -1; |
int uploT = (*CHAR(asChar(uplo)) == 'U') ? 1 : -1; |
360 |
int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0; |
int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0; |
361 |
R_CheckStack(); |
R_CheckStack(); |
362 |
|
chgx = cholmod_copy(chx, /* stype: */ uploT, chx->xtype, &c); |
363 |
|
|
364 |
chgx = cholmod_l_copy(chx, /* stype: */ uploT, chx->xtype, &c); |
SEXP dns = GET_SLOT(x, Matrix_DimNamesSym); |
365 |
|
if(asLogical(sym_dmns)) |
366 |
|
dns = symmetric_DimNames(dns); |
367 |
|
else if((!isNull(VECTOR_ELT(dns, 0)) && |
368 |
|
!isNull(VECTOR_ELT(dns, 1))) || |
369 |
|
!isNull(getAttrib(dns, R_NamesSymbol))) { |
370 |
|
/* symmetrize them if both are not NULL |
371 |
|
* or names(dimnames(.)) is asymmetric : */ |
372 |
|
dns = PROTECT(duplicate(dns)); |
373 |
|
if(!equal_string_vectors(VECTOR_ELT(dns, 0), |
374 |
|
VECTOR_ELT(dns, 1))) { |
375 |
|
if(uploT == 1) |
376 |
|
SET_VECTOR_ELT(dns, 0, VECTOR_ELT(dns,1)); |
377 |
|
else |
378 |
|
SET_VECTOR_ELT(dns, 1, VECTOR_ELT(dns,0)); |
379 |
|
} |
380 |
|
SEXP nms_dns = getAttrib(dns, R_NamesSymbol); |
381 |
|
if(!isNull(nms_dns) && // names(dimnames(.)) : |
382 |
|
!R_compute_identical(STRING_ELT(nms_dns, 0), |
383 |
|
STRING_ELT(nms_dns, 1), 16)) { |
384 |
|
if(uploT == 1) |
385 |
|
SET_STRING_ELT(nms_dns, 0, STRING_ELT(nms_dns,1)); |
386 |
|
else |
387 |
|
SET_STRING_ELT(nms_dns, 1, STRING_ELT(nms_dns,0)); |
388 |
|
setAttrib(dns, R_NamesSymbol, nms_dns); |
389 |
|
} |
390 |
|
UNPROTECT(1); |
391 |
|
} |
392 |
/* xtype: pattern, "real", complex or .. */ |
/* xtype: pattern, "real", complex or .. */ |
393 |
return chm_sparse_to_SEXP(chgx, 1, 0, Rkind, "", |
return chm_sparse_to_SEXP(chgx, 1, 0, Rkind, "", dns); |
|
GET_SLOT(x, Matrix_DimNamesSym)); |
|
394 |
} |
} |
395 |
|
|
396 |
SEXP Csparse_transpose(SEXP x, SEXP tri) |
SEXP Csparse_transpose(SEXP x, SEXP tri) |
399 |
* since cholmod (& cs) lacks sparse 'int' matrices */ |
* since cholmod (& cs) lacks sparse 'int' matrices */ |
400 |
CHM_SP chx = AS_CHM_SP__(x); |
CHM_SP chx = AS_CHM_SP__(x); |
401 |
int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0; |
int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0; |
402 |
CHM_SP chxt = cholmod_l_transpose(chx, chx->xtype, &c); |
CHM_SP chxt = cholmod_transpose(chx, chx->xtype, &c); |
403 |
SEXP dn = PROTECT(duplicate(GET_SLOT(x, Matrix_DimNamesSym))), tmp; |
SEXP dn = PROTECT(duplicate(GET_SLOT(x, Matrix_DimNamesSym))), tmp; |
404 |
int tr = asLogical(tri); |
int tr = asLogical(tri); |
405 |
R_CheckStack(); |
R_CheckStack(); |
407 |
tmp = VECTOR_ELT(dn, 0); /* swap the dimnames */ |
tmp = VECTOR_ELT(dn, 0); /* swap the dimnames */ |
408 |
SET_VECTOR_ELT(dn, 0, VECTOR_ELT(dn, 1)); |
SET_VECTOR_ELT(dn, 0, VECTOR_ELT(dn, 1)); |
409 |
SET_VECTOR_ELT(dn, 1, tmp); |
SET_VECTOR_ELT(dn, 1, tmp); |
410 |
|
if(!isNull(tmp = getAttrib(dn, R_NamesSymbol))) { // swap names(dimnames(.)): |
411 |
|
SEXP nms_dns = PROTECT(allocVector(VECSXP, 2)); |
412 |
|
SET_VECTOR_ELT(nms_dns, 1, STRING_ELT(tmp, 0)); |
413 |
|
SET_VECTOR_ELT(nms_dns, 0, STRING_ELT(tmp, 1)); |
414 |
|
setAttrib(dn, R_NamesSymbol, nms_dns); |
415 |
|
UNPROTECT(1); |
416 |
|
} |
417 |
UNPROTECT(1); |
UNPROTECT(1); |
418 |
return chm_sparse_to_SEXP(chxt, 1, /* SWAP 'uplo' for triangular */ |
return chm_sparse_to_SEXP(chxt, 1, /* SWAP 'uplo' for triangular */ |
419 |
tr ? ((*uplo_P(x) == 'U') ? -1 : 1) : 0, |
tr ? ((*uplo_P(x) == 'U') ? -1 : 1) : 0, |
420 |
Rkind, tr ? diag_P(x) : "", dn); |
Rkind, tr ? diag_P(x) : "", dn); |
421 |
} |
} |
422 |
|
|
423 |
SEXP Csparse_Csparse_prod(SEXP a, SEXP b) |
/** @brief A %*% B - for matrices of class CsparseMatrix (R package "Matrix") |
424 |
|
* |
425 |
|
* @param a |
426 |
|
* @param b |
427 |
|
* @param bool_arith |
428 |
|
* |
429 |
|
* @return |
430 |
|
* |
431 |
|
* NOTA BENE: cholmod_ssmult(A,B, ...) -> ./CHOLMOD/MatrixOps/cholmod_ssmult.c |
432 |
|
* --------- computes a patter*n* matrix __always_ when |
433 |
|
* *one* of A or B is pattern*n*, because of this (line 73-74): |
434 |
|
--------------------------------------------------------------------------- |
435 |
|
values = values && |
436 |
|
(A->xtype != CHOLMOD_PATTERN) && (B->xtype != CHOLMOD_PATTERN) ; |
437 |
|
--------------------------------------------------------------------------- |
438 |
|
* ==> Often need to copy the patter*n* to a *l*ogical matrix first !!! |
439 |
|
*/ |
440 |
|
SEXP Csparse_Csparse_prod(SEXP a, SEXP b, SEXP bool_arith) |
441 |
{ |
{ |
442 |
CHM_SP |
CHM_SP |
443 |
cha = AS_CHM_SP(a), |
cha = AS_CHM_SP(a), |
444 |
chb = AS_CHM_SP(b), |
chb = AS_CHM_SP(b), chc; |
|
chc = cholmod_l_ssmult(cha, chb, /*out_stype:*/ 0, |
|
|
/* values:= is_numeric (T/F) */ cha->xtype > 0, |
|
|
/*out sorted:*/ 1, &c); |
|
|
const char *cl_a = class_P(a), *cl_b = class_P(b); |
|
|
char diag[] = {'\0', '\0'}; |
|
|
int uploT = 0; |
|
|
SEXP dn = PROTECT(allocVector(VECSXP, 2)); |
|
445 |
R_CheckStack(); |
R_CheckStack(); |
446 |
|
static const char *valid_tri[] = { MATRIX_VALID_tri_Csparse, "" }; |
447 |
|
char diag[] = {'\0', '\0'}; |
448 |
|
int uploT = 0, nprot = 1, |
449 |
|
do_bool = asLogical(bool_arith); // TRUE / NA / FALSE |
450 |
|
Rboolean |
451 |
|
a_is_n = (cha->xtype == CHOLMOD_PATTERN), |
452 |
|
b_is_n = (chb->xtype == CHOLMOD_PATTERN), |
453 |
|
force_num = (do_bool == FALSE), |
454 |
|
maybe_bool= (do_bool == NA_LOGICAL); |
455 |
|
|
456 |
#ifdef DEBUG_Matrix_verbose |
#ifdef DEBUG_Matrix_verbose |
457 |
Rprintf("DBG Csparse_C*_prod(%s, %s)\n", cl_a, cl_b); |
Rprintf("DBG Csparse_C*_prod(%s, %s)\n", class_P(a), class_P(b)); |
458 |
#endif |
#endif |
459 |
|
|
460 |
|
if(a_is_n && (force_num || (maybe_bool && !b_is_n))) { |
461 |
|
/* coerce 'a' to double; |
462 |
|
* have no CHOLMOD function (pattern -> logical) --> use "our" code */ |
463 |
|
SEXP da = PROTECT(nz2Csparse(a, x_double)); nprot++; |
464 |
|
cha = AS_CHM_SP(da); |
465 |
|
R_CheckStack(); |
466 |
|
a_is_n = FALSE; |
467 |
|
} |
468 |
|
else if(b_is_n && (force_num || (maybe_bool && !a_is_n))) { |
469 |
|
// coerce 'b' to double |
470 |
|
SEXP db = PROTECT(nz2Csparse(b, x_double)); nprot++; |
471 |
|
chb = AS_CHM_SP(db); |
472 |
|
R_CheckStack(); |
473 |
|
b_is_n = FALSE; |
474 |
|
} |
475 |
|
chc = cholmod_ssmult(cha, chb, /*out_stype:*/ 0, |
476 |
|
/* values : */ do_bool != TRUE, |
477 |
|
/* sorted = TRUE: */ 1, &c); |
478 |
|
|
479 |
/* Preserve triangularity and even unit-triangularity if appropriate. |
/* Preserve triangularity and even unit-triangularity if appropriate. |
480 |
* Note that in that case, the multiplication itself should happen |
* Note that in that case, the multiplication itself should happen |
481 |
* faster. But there's no support for that in CHOLMOD */ |
* faster. But there's no support for that in CHOLMOD */ |
482 |
|
|
483 |
/* UGLY hack -- rather should have (fast!) C-level version of |
if(Matrix_check_class_etc(a, valid_tri) >= 0 && |
484 |
* is(a, "triangularMatrix") etc */ |
Matrix_check_class_etc(b, valid_tri) >= 0) |
|
if (cl_a[1] == 't' && cl_b[1] == 't') |
|
|
/* FIXME: fails for "Cholesky","BunchKaufmann"..*/ |
|
485 |
if(*uplo_P(a) == *uplo_P(b)) { /* both upper, or both lower tri. */ |
if(*uplo_P(a) == *uplo_P(b)) { /* both upper, or both lower tri. */ |
486 |
uploT = (*uplo_P(a) == 'U') ? 1 : -1; |
uploT = (*uplo_P(a) == 'U') ? 1 : -1; |
487 |
if(*diag_P(a) == 'U' && *diag_P(b) == 'U') { /* return UNIT-triag. */ |
if(*diag_P(a) == 'U' && *diag_P(b) == 'U') { /* return UNIT-triag. */ |
491 |
} |
} |
492 |
else diag[0]= 'N'; |
else diag[0]= 'N'; |
493 |
} |
} |
494 |
|
|
495 |
|
SEXP dn = PROTECT(allocVector(VECSXP, 2)); |
496 |
SET_VECTOR_ELT(dn, 0, /* establish dimnames */ |
SET_VECTOR_ELT(dn, 0, /* establish dimnames */ |
497 |
duplicate(VECTOR_ELT(GET_SLOT(a, Matrix_DimNamesSym), 0))); |
duplicate(VECTOR_ELT(GET_SLOT(a, Matrix_DimNamesSym), 0))); |
498 |
SET_VECTOR_ELT(dn, 1, |
SET_VECTOR_ELT(dn, 1, |
499 |
duplicate(VECTOR_ELT(GET_SLOT(b, Matrix_DimNamesSym), 1))); |
duplicate(VECTOR_ELT(GET_SLOT(b, Matrix_DimNamesSym), 1))); |
500 |
UNPROTECT(1); |
UNPROTECT(nprot); |
501 |
return chm_sparse_to_SEXP(chc, 1, uploT, /*Rkind*/0, diag, dn); |
return chm_sparse_to_SEXP(chc, 1, uploT, /*Rkind*/0, diag, dn); |
502 |
} |
} |
503 |
|
|
504 |
SEXP Csparse_Csparse_crossprod(SEXP a, SEXP b, SEXP trans) |
/** @brief [t]crossprod (<Csparse>, <Csparse>) |
505 |
|
* |
506 |
|
* @param a a "CsparseMatrix" object |
507 |
|
* @param b a "CsparseMatrix" object |
508 |
|
* @param trans trans = FALSE: crossprod(a,b) |
509 |
|
* trans = TRUE : tcrossprod(a,b) |
510 |
|
* @param bool_arith logical (TRUE / NA / FALSE): Should boolean arithmetic be used. |
511 |
|
* |
512 |
|
* @return a CsparseMatrix, the (t)cross product of a and b. |
513 |
|
*/ |
514 |
|
SEXP Csparse_Csparse_crossprod(SEXP a, SEXP b, SEXP trans, SEXP bool_arith) |
515 |
{ |
{ |
516 |
int tr = asLogical(trans); |
int tr = asLogical(trans), nprot = 1, |
517 |
|
do_bool = asLogical(bool_arith); // TRUE / NA / FALSE |
518 |
CHM_SP |
CHM_SP |
519 |
cha = AS_CHM_SP(a), |
cha = AS_CHM_SP(a), |
520 |
chb = AS_CHM_SP(b), |
chb = AS_CHM_SP(b), |
521 |
chTr, chc; |
chTr, chc; |
522 |
const char *cl_a = class_P(a), *cl_b = class_P(b); |
R_CheckStack(); |
523 |
|
static const char *valid_tri[] = { MATRIX_VALID_tri_Csparse, "" }; |
524 |
char diag[] = {'\0', '\0'}; |
char diag[] = {'\0', '\0'}; |
525 |
int uploT = 0; |
int uploT = 0; |
526 |
SEXP dn = PROTECT(allocVector(VECSXP, 2)); |
Rboolean |
527 |
|
a_is_n = (cha->xtype == CHOLMOD_PATTERN), |
528 |
|
b_is_n = (chb->xtype == CHOLMOD_PATTERN), |
529 |
|
force_num = (do_bool == FALSE), |
530 |
|
maybe_bool= (do_bool == NA_LOGICAL); |
531 |
|
|
532 |
|
if(a_is_n && (force_num || (maybe_bool && !b_is_n))) { |
533 |
|
// coerce 'a' to double |
534 |
|
SEXP da = PROTECT(nz2Csparse(a, x_double)); nprot++; |
535 |
|
cha = AS_CHM_SP(da); |
536 |
R_CheckStack(); |
R_CheckStack(); |
537 |
|
// a_is_n = FALSE; |
538 |
chTr = cholmod_l_transpose((tr) ? chb : cha, chb->xtype, &c); |
} |
539 |
chc = cholmod_l_ssmult((tr) ? cha : chTr, (tr) ? chTr : chb, |
else if(b_is_n && (force_num || (maybe_bool && !a_is_n))) { |
540 |
/*out_stype:*/ 0, cha->xtype, /*out sorted:*/ 1, &c); |
// coerce 'b' to double |
541 |
cholmod_l_free_sparse(&chTr, &c); |
SEXP db = PROTECT(nz2Csparse(b, x_double)); nprot++; |
542 |
|
chb = AS_CHM_SP(db); |
543 |
|
R_CheckStack(); |
544 |
|
// b_is_n = FALSE; |
545 |
|
} |
546 |
|
else if(do_bool == TRUE) { // Want boolean arithmetic: sufficient if *one* is pattern: |
547 |
|
if(!a_is_n && !b_is_n) { |
548 |
|
// coerce 'a' to pattern |
549 |
|
SEXP da = PROTECT(Csparse2nz(a, /* tri = */ |
550 |
|
Matrix_check_class_etc(a, valid_tri) >= 0)); nprot++; |
551 |
|
cha = AS_CHM_SP(da); |
552 |
|
R_CheckStack(); |
553 |
|
// a_is_n = TRUE; |
554 |
|
} |
555 |
|
} |
556 |
|
chTr = cholmod_transpose((tr) ? chb : cha, chb->xtype, &c); |
557 |
|
chc = cholmod_ssmult((tr) ? cha : chTr, (tr) ? chTr : chb, |
558 |
|
/*out_stype:*/ 0, /* values : */ do_bool != TRUE, |
559 |
|
/* sorted = TRUE: */ 1, &c); |
560 |
|
cholmod_free_sparse(&chTr, &c); |
561 |
|
|
562 |
/* Preserve triangularity and unit-triangularity if appropriate; |
/* Preserve triangularity and unit-triangularity if appropriate; |
563 |
* see Csparse_Csparse_prod() for comments */ |
* see Csparse_Csparse_prod() for comments */ |
564 |
if (cl_a[1] == 't' && cl_b[1] == 't') |
if(Matrix_check_class_etc(a, valid_tri) >= 0 && |
565 |
|
Matrix_check_class_etc(b, valid_tri) >= 0) |
566 |
if(*uplo_P(a) != *uplo_P(b)) { /* one 'U', the other 'L' */ |
if(*uplo_P(a) != *uplo_P(b)) { /* one 'U', the other 'L' */ |
567 |
uploT = (*uplo_P(b) == 'U') ? 1 : -1; |
uploT = (*uplo_P(b) == 'U') ? 1 : -1; |
568 |
if(*diag_P(a) == 'U' && *diag_P(b) == 'U') { /* return UNIT-triag. */ |
if(*diag_P(a) == 'U' && *diag_P(b) == 'U') { /* return UNIT-triag. */ |
571 |
} |
} |
572 |
else diag[0]= 'N'; |
else diag[0]= 'N'; |
573 |
} |
} |
574 |
|
|
575 |
|
SEXP dn = PROTECT(allocVector(VECSXP, 2)); |
576 |
SET_VECTOR_ELT(dn, 0, /* establish dimnames */ |
SET_VECTOR_ELT(dn, 0, /* establish dimnames */ |
577 |
duplicate(VECTOR_ELT(GET_SLOT(a, Matrix_DimNamesSym), (tr) ? 0 : 1))); |
duplicate(VECTOR_ELT(GET_SLOT(a, Matrix_DimNamesSym), |
578 |
|
(tr) ? 0 : 1))); |
579 |
SET_VECTOR_ELT(dn, 1, |
SET_VECTOR_ELT(dn, 1, |
580 |
duplicate(VECTOR_ELT(GET_SLOT(b, Matrix_DimNamesSym), (tr) ? 0 : 1))); |
duplicate(VECTOR_ELT(GET_SLOT(b, Matrix_DimNamesSym), |
581 |
UNPROTECT(1); |
(tr) ? 0 : 1))); |
582 |
|
UNPROTECT(nprot); |
583 |
return chm_sparse_to_SEXP(chc, 1, uploT, /*Rkind*/0, diag, dn); |
return chm_sparse_to_SEXP(chc, 1, uploT, /*Rkind*/0, diag, dn); |
584 |
} |
} |
585 |
|
|
586 |
SEXP Csparse_dense_prod(SEXP a, SEXP b) |
/** |
587 |
|
* All (dense * sparse) Matrix products and cross products |
588 |
|
* |
589 |
|
* f( f(<Csparse>) %*% f(<dense>) ) where f () is either t () [tranpose] or the identity. |
590 |
|
* |
591 |
|
* @param a CsparseMatrix (n x m) |
592 |
|
* @param b numeric vector, matrix, or denseMatrix (m x k) or (k x m) if `transp` is '2' or 'B' |
593 |
|
* @param transp character. |
594 |
|
* = " " : nothing transposed {apart from a} |
595 |
|
* = "2" : "transpose 2nd arg": use t(b) instead of b (= 2nd argument) |
596 |
|
* = "c" : "transpose c": Return t(c) instead of c |
597 |
|
* = "B" : "transpose both": use t(b) and return t(c) instead of c |
598 |
|
* NB: For "2", "c", "B", need to transpose a *dense* matrix, B or C --> chm_transpose_dense() |
599 |
|
* |
600 |
|
* @return a dense matrix, the matrix product c = g(a,b) : |
601 |
|
* |
602 |
|
* Condition (R) Condition (C) |
603 |
|
* R notation Math notation cross transp t.a t.b t.ans |
604 |
|
* ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~ |
605 |
|
* c <- a %*% b C := A B . " " . . . |
606 |
|
* c <- a %*% t(b) C := A B' . "2" . | . |
607 |
|
* c <- t(a %*% b) C := (A B)' = B'A' . "c" . . | |
608 |
|
* c <- t(a %*% t(b)) C := (A B')' = B A' . "B" . | | |
609 |
|
* |
610 |
|
* c <- t(a) %*% b C := A'B TRUE " " | . . |
611 |
|
* c <- t(a) %*% t(b) C := A'B' TRUE "2" | | . |
612 |
|
* c <- t(t(a) %*% b) C := (A'B)' = B'A TRUE "c" | . | |
613 |
|
* c <- t(t(a) %*% t(b)) C := (A'B')' = B A TRUE "B" | | | |
614 |
|
*/ |
615 |
|
SEXP Csp_dense_products(SEXP a, SEXP b, |
616 |
|
Rboolean transp_a, Rboolean transp_b, Rboolean transp_ans) |
617 |
{ |
{ |
618 |
CHM_SP cha = AS_CHM_SP(a); |
CHM_SP cha = AS_CHM_SP(a); |
619 |
SEXP b_M = PROTECT(mMatrix_as_dgeMatrix(b)); |
int a_nc = transp_a ? cha->nrow : cha->ncol, |
620 |
CHM_DN chb = AS_CHM_DN(b_M); |
a_nr = transp_a ? cha->ncol : cha->nrow; |
621 |
CHM_DN chc = cholmod_l_allocate_dense(cha->nrow, chb->ncol, cha->nrow, |
Rboolean |
622 |
chb->xtype, &c); |
maybe_transp_b = (a_nc == 1), |
623 |
SEXP dn = PROTECT(allocVector(VECSXP, 2)); |
b_is_vector = FALSE; |
624 |
double one[] = {1,0}, zero[] = {0,0}; |
/* NOTE: trans_b {<--> "use t(b) instead of b" } |
625 |
|
---- "interferes" with the case automatic treatment of *vector* b. |
626 |
|
In that case, t(b) or b is used "whatever make more sense", |
627 |
|
according to the general R philosophy of treating vectors in matrix products. |
628 |
|
*/ |
629 |
|
|
630 |
|
/* repeating a "cheap part" of mMatrix_as_dgeMatrix2(b, .) to see if |
631 |
|
* we have a vector that we might 'transpose_if_vector' : */ |
632 |
|
static const char *valid[] = {"_NOT_A_CLASS_", MATRIX_VALID_ddense, ""}; |
633 |
|
/* int ctype = Matrix_check_class_etc(b, valid); |
634 |
|
* if (ctype > 0) /.* a ddenseMatrix object */ |
635 |
|
if (Matrix_check_class_etc(b, valid) < 0) { |
636 |
|
// not a ddenseM*: is.matrix() or vector: |
637 |
|
b_is_vector = !isMatrix(b); |
638 |
|
} |
639 |
|
|
640 |
|
if(b_is_vector) { |
641 |
|
/* determine *if* we want/need to transpose at all: |
642 |
|
* if (length(b) == ncol(A)) have match: use dim = c(n, 1) (<=> do *not* transp); |
643 |
|
* otherwise, try to transpose: ok if (ncol(A) == 1) [see also above]: */ |
644 |
|
maybe_transp_b = (LENGTH(b) != a_nc); |
645 |
|
// Here, we transpose already in mMatrix_as_dge*() ==> don't do it later: |
646 |
|
transp_b = FALSE; |
647 |
|
} |
648 |
|
SEXP b_M = PROTECT(mMatrix_as_dgeMatrix2(b, maybe_transp_b)); |
649 |
|
|
650 |
|
CHM_DN chb = AS_CHM_DN(b_M), b_t; |
651 |
R_CheckStack(); |
R_CheckStack(); |
652 |
|
int ncol_b; |
653 |
|
if(transp_b) { // transpose b: |
654 |
|
b_t = cholmod_allocate_dense(chb->ncol, chb->nrow, chb->ncol, chb->xtype, &c); |
655 |
|
chm_transpose_dense(b_t, chb); |
656 |
|
ncol_b = b_t->ncol; |
657 |
|
} else |
658 |
|
ncol_b = chb->ncol; |
659 |
|
// Result C {with dim() before it may be transposed}: |
660 |
|
CHM_DN chc = cholmod_allocate_dense(a_nr, ncol_b, a_nr, chb->xtype, &c); |
661 |
|
double one[] = {1,0}, zero[] = {0,0}; |
662 |
|
int nprot = 2; |
663 |
|
|
664 |
cholmod_l_sdmult(cha, 0, one, zero, chb, chc, &c); |
/* Tim Davis, please FIXME: currently (2010-11) *fails* when a is a pattern matrix:*/ |
665 |
SET_VECTOR_ELT(dn, 0, /* establish dimnames */ |
if(cha->xtype == CHOLMOD_PATTERN) { |
666 |
duplicate(VECTOR_ELT(GET_SLOT(a, Matrix_DimNamesSym), 0))); |
/* warning(_("Csparse_dense_prod(): cholmod_sdmult() not yet implemented for pattern./ ngCMatrix" */ |
667 |
SET_VECTOR_ELT(dn, 1, |
/* " --> slightly inefficient coercion")); */ |
668 |
duplicate(VECTOR_ELT(GET_SLOT(b_M, Matrix_DimNamesSym), 1))); |
|
669 |
UNPROTECT(2); |
// This *fails* to produce a CHOLMOD_REAL .. |
670 |
return chm_dense_to_SEXP(chc, 1, 0, dn); |
// CHM_SP chd = cholmod_l_copy(cha, cha->stype, CHOLMOD_REAL, &c); |
671 |
|
// --> use our Matrix-classes |
672 |
|
SEXP da = PROTECT(nz2Csparse(a, x_double)); nprot++; |
673 |
|
cha = AS_CHM_SP(da); |
674 |
|
} |
675 |
|
|
676 |
|
/* cholmod_sdmult(A, transp, alpha, beta, X, Y, &c): depending on transp == 0 / != 0: |
677 |
|
* Y := alpha*(A*X) + beta*Y or alpha*(A'*X) + beta*Y; here, alpha = 1, beta = 0: |
678 |
|
* Y := A*X or A'*X |
679 |
|
* NB: always <sparse> %*% <dense> ! |
680 |
|
*/ |
681 |
|
cholmod_sdmult(cha, transp_a, one, zero, (transp_b ? b_t : chb), /* -> */ chc, &c); |
682 |
|
|
683 |
|
SEXP dn = PROTECT(allocVector(VECSXP, 2)); /* establish dimnames */ |
684 |
|
SET_VECTOR_ELT(dn, transp_ans ? 1 : 0, |
685 |
|
duplicate(VECTOR_ELT(GET_SLOT(a, Matrix_DimNamesSym), transp_a ? 1 : 0))); |
686 |
|
SET_VECTOR_ELT(dn, transp_ans ? 0 : 1, |
687 |
|
duplicate(VECTOR_ELT(GET_SLOT(b_M, Matrix_DimNamesSym), |
688 |
|
transp_b ? 0 : 1))); |
689 |
|
if(transp_b) cholmod_free_dense(&b_t, &c); |
690 |
|
UNPROTECT(nprot); |
691 |
|
return chm_dense_to_SEXP(chc, 1, 0, dn, transp_ans); |
692 |
} |
} |
693 |
|
|
694 |
SEXP Csparse_dense_crossprod(SEXP a, SEXP b) |
|
695 |
|
SEXP Csparse_dense_prod(SEXP a, SEXP b, SEXP transp) |
696 |
{ |
{ |
697 |
CHM_SP cha = AS_CHM_SP(a); |
return |
698 |
SEXP b_M = PROTECT(mMatrix_as_dgeMatrix(b)); |
Csp_dense_products(a, b, |
699 |
CHM_DN chb = AS_CHM_DN(b_M); |
/* transp_a = */ FALSE, |
700 |
CHM_DN chc = cholmod_l_allocate_dense(cha->ncol, chb->ncol, cha->ncol, |
/* transp_b = */ (*CHAR(asChar(transp)) == '2' || *CHAR(asChar(transp)) == 'B'), |
701 |
chb->xtype, &c); |
/* transp_ans = */ (*CHAR(asChar(transp)) == 'c' || *CHAR(asChar(transp)) == 'B')); |
702 |
SEXP dn = PROTECT(allocVector(VECSXP, 2)); |
} |
|
double one[] = {1,0}, zero[] = {0,0}; |
|
|
R_CheckStack(); |
|
703 |
|
|
704 |
cholmod_l_sdmult(cha, 1, one, zero, chb, chc, &c); |
SEXP Csparse_dense_crossprod(SEXP a, SEXP b, SEXP transp) |
705 |
SET_VECTOR_ELT(dn, 0, /* establish dimnames */ |
{ |
706 |
duplicate(VECTOR_ELT(GET_SLOT(a, Matrix_DimNamesSym), 1))); |
return |
707 |
SET_VECTOR_ELT(dn, 1, |
Csp_dense_products(a, b, |
708 |
duplicate(VECTOR_ELT(GET_SLOT(b_M, Matrix_DimNamesSym), 1))); |
/* transp_a = */ TRUE, |
709 |
UNPROTECT(2); |
/* transp_b = */ (*CHAR(asChar(transp)) == '2' || *CHAR(asChar(transp)) == 'B'), |
710 |
return chm_dense_to_SEXP(chc, 1, 0, dn); |
/* transp_ans = */ (*CHAR(asChar(transp)) == 'c' || *CHAR(asChar(transp)) == 'B')); |
711 |
} |
} |
712 |
|
|
713 |
/* Computes x'x or x x' -- *also* for Tsparse (triplet = TRUE) |
|
714 |
see Csparse_Csparse_crossprod above for x'y and x y' */ |
/** @brief Computes x'x or x x' -- *also* for Tsparse (triplet = TRUE) |
715 |
SEXP Csparse_crossprod(SEXP x, SEXP trans, SEXP triplet) |
see Csparse_Csparse_crossprod above for x'y and x y' |
716 |
|
*/ |
717 |
|
SEXP Csparse_crossprod(SEXP x, SEXP trans, SEXP triplet, SEXP bool_arith) |
718 |
{ |
{ |
719 |
int trip = asLogical(triplet), |
int tripl = asLogical(triplet), |
720 |
tr = asLogical(trans); /* gets reversed because _aat is tcrossprod */ |
tr = asLogical(trans), /* gets reversed because _aat is tcrossprod */ |
721 |
|
do_bool = asLogical(bool_arith); // TRUE / NA / FALSE |
722 |
#ifdef AS_CHM_DIAGU2N_FIXED_FINALLY |
#ifdef AS_CHM_DIAGU2N_FIXED_FINALLY |
723 |
CHM_TR cht = trip ? AS_CHM_TR(x) : (CHM_TR) NULL; |
CHM_TR cht = tripl ? AS_CHM_TR(x) : (CHM_TR) NULL; int nprot = 1; |
724 |
#else /* workaround needed:*/ |
#else /* workaround needed:*/ |
725 |
SEXP xx = PROTECT(Tsparse_diagU2N(x)); |
SEXP xx = PROTECT(Tsparse_diagU2N(x)); |
726 |
CHM_TR cht = trip ? AS_CHM_TR__(xx) : (CHM_TR) NULL; |
CHM_TR cht = tripl ? AS_CHM_TR__(xx) : (CHM_TR) NULL; int nprot = 2; |
727 |
#endif |
#endif |
728 |
CHM_SP chcp, chxt, |
CHM_SP chcp, chxt, chxc, |
729 |
chx = (trip ? |
chx = (tripl ? |
730 |
cholmod_l_triplet_to_sparse(cht, cht->nnz, &c) : |
cholmod_triplet_to_sparse(cht, cht->nnz, &c) : |
731 |
AS_CHM_SP(x)); |
AS_CHM_SP(x)); |
732 |
SEXP dn = PROTECT(allocVector(VECSXP, 2)); |
SEXP dn = PROTECT(allocVector(VECSXP, 2)); |
733 |
R_CheckStack(); |
R_CheckStack(); |
734 |
|
Rboolean |
735 |
|
x_is_n = (chx->xtype == CHOLMOD_PATTERN), |
736 |
|
x_is_sym = chx->stype != 0, |
737 |
|
force_num = (do_bool == FALSE); |
738 |
|
|
739 |
|
if(x_is_n && force_num) { |
740 |
|
// coerce 'x' to double |
741 |
|
SEXP dx = PROTECT(nz2Csparse(x, x_double)); nprot++; |
742 |
|
chx = AS_CHM_SP(dx); |
743 |
|
R_CheckStack(); |
744 |
|
} |
745 |
|
else if(do_bool == TRUE && !x_is_n) { // Want boolean arithmetic; need patter[n] |
746 |
|
// coerce 'x' to pattern |
747 |
|
static const char *valid_tri[] = { MATRIX_VALID_tri_Csparse, "" }; |
748 |
|
SEXP dx = PROTECT(Csparse2nz(x, /* tri = */ |
749 |
|
Matrix_check_class_etc(x, valid_tri) >= 0)); nprot++; |
750 |
|
chx = AS_CHM_SP(dx); |
751 |
|
R_CheckStack(); |
752 |
|
} |
753 |
|
|
754 |
|
if (!tr) chxt = cholmod_transpose(chx, chx->xtype, &c); |
755 |
|
|
756 |
if (!tr) chxt = cholmod_l_transpose(chx, chx->xtype, &c); |
if (x_is_sym) // cholmod_aat() does not like symmetric |
757 |
chcp = cholmod_l_aat((!tr) ? chxt : chx, (int *) NULL, 0, chx->xtype, &c); |
chxc = cholmod_copy(tr ? chx : chxt, /* stype: */ 0, |
758 |
|
chx->xtype, &c); |
759 |
|
// CHOLMOD/Core/cholmod_aat.c : |
760 |
|
chcp = cholmod_aat(x_is_sym ? chxc : (tr ? chx : chxt), |
761 |
|
(int *) NULL, 0, /* mode: */ chx->xtype, &c); |
762 |
if(!chcp) { |
if(!chcp) { |
763 |
UNPROTECT(1); |
UNPROTECT(1); |
764 |
error(_("Csparse_crossprod(): error return from cholmod_l_aat()")); |
error(_("Csparse_crossprod(): error return from cholmod_aat()")); |
765 |
} |
} |
766 |
cholmod_l_band_inplace(0, chcp->ncol, chcp->xtype, chcp, &c); |
cholmod_band_inplace(0, chcp->ncol, chcp->xtype, chcp, &c); |
767 |
chcp->stype = 1; |
chcp->stype = 1; // symmetric |
768 |
if (trip) cholmod_l_free_sparse(&chx, &c); |
if (tripl) cholmod_free_sparse(&chx, &c); |
769 |
if (!tr) cholmod_l_free_sparse(&chxt, &c); |
if (!tr) cholmod_free_sparse(&chxt, &c); |
770 |
SET_VECTOR_ELT(dn, 0, /* establish dimnames */ |
SET_VECTOR_ELT(dn, 0, /* establish dimnames */ |
771 |
duplicate(VECTOR_ELT(GET_SLOT(x, Matrix_DimNamesSym), |
duplicate(VECTOR_ELT(GET_SLOT(x, Matrix_DimNamesSym), |
772 |
(tr) ? 0 : 1))); |
(tr) ? 0 : 1))); |
773 |
SET_VECTOR_ELT(dn, 1, duplicate(VECTOR_ELT(dn, 0))); |
SET_VECTOR_ELT(dn, 1, duplicate(VECTOR_ELT(dn, 0))); |
774 |
#ifdef AS_CHM_DIAGU2N_FIXED_FINALLY |
UNPROTECT(nprot); |
775 |
UNPROTECT(1); |
// FIXME: uploT for symmetric ? |
|
#else |
|
|
UNPROTECT(2); |
|
|
#endif |
|
776 |
return chm_sparse_to_SEXP(chcp, 1, 0, 0, "", dn); |
return chm_sparse_to_SEXP(chcp, 1, 0, 0, "", dn); |
777 |
} |
} |
778 |
|
|
779 |
|
/** @brief Csparse_drop(x, tol): drop entries with absolute value < tol, i.e, |
780 |
|
* at least all "explicit" zeros. */ |
781 |
SEXP Csparse_drop(SEXP x, SEXP tol) |
SEXP Csparse_drop(SEXP x, SEXP tol) |
782 |
{ |
{ |
783 |
const char *cl = class_P(x); |
const char *cl = class_P(x); |
784 |
/* dtCMatrix, etc; [1] = the second character =?= 't' for triangular */ |
/* dtCMatrix, etc; [1] = the second character =?= 't' for triangular */ |
785 |
int tr = (cl[1] == 't'); |
int tr = (cl[1] == 't'); // FIXME - rather Matrix_check_class_etc(..) |
786 |
CHM_SP chx = AS_CHM_SP__(x); |
CHM_SP chx = AS_CHM_SP__(x); |
787 |
CHM_SP ans = cholmod_l_copy(chx, chx->stype, chx->xtype, &c); |
CHM_SP ans = cholmod_copy(chx, chx->stype, chx->xtype, &c); |
788 |
double dtol = asReal(tol); |
double dtol = asReal(tol); |
789 |
int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0; |
int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0; |
790 |
R_CheckStack(); |
R_CheckStack(); |
791 |
|
|
792 |
if(!cholmod_l_drop(dtol, ans, &c)) |
if(!cholmod_drop(dtol, ans, &c)) |
793 |
error(_("cholmod_l_drop() failed")); |
error(_("cholmod_drop() failed")); |
794 |
return chm_sparse_to_SEXP(ans, 1, |
return chm_sparse_to_SEXP(ans, 1, |
795 |
tr ? ((*uplo_P(x) == 'U') ? 1 : -1) : 0, |
tr ? ((*uplo_P(x) == 'U') ? 1 : -1) : 0, |
796 |
Rkind, tr ? diag_P(x) : "", |
Rkind, tr ? diag_P(x) : "", |
797 |
GET_SLOT(x, Matrix_DimNamesSym)); |
GET_SLOT(x, Matrix_DimNamesSym)); |
798 |
} |
} |
799 |
|
|
800 |
|
/** @brief Horizontal Concatenation - cbind( <Csparse>, <Csparse>) |
801 |
|
*/ |
802 |
SEXP Csparse_horzcat(SEXP x, SEXP y) |
SEXP Csparse_horzcat(SEXP x, SEXP y) |
803 |
{ |
{ |
804 |
CHM_SP chx = AS_CHM_SP__(x), chy = AS_CHM_SP__(y); |
#define CSPARSE_CAT(_KIND_) \ |
805 |
int Rk_x = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0, |
CHM_SP chx = AS_CHM_SP__(x), chy = AS_CHM_SP__(y); \ |
806 |
Rk_y = (chy->xtype != CHOLMOD_PATTERN) ? Real_kind(y) : 0, |
R_CheckStack(); \ |
807 |
Rkind = /* logical if both x and y are */ (Rk_x == 1 && Rk_y == 1) ? 1 : 0; |
int Rk_x = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : -3, \ |
808 |
R_CheckStack(); |
Rk_y = (chy->xtype != CHOLMOD_PATTERN) ? Real_kind(y) : -3, Rkind; \ |
809 |
|
if(Rk_x == -3 || Rk_y == -3) { /* at least one of them is patter"n" */ \ |
810 |
|
if(Rk_x == -3 && Rk_y == -3) { /* fine */ \ |
811 |
|
} else { /* only one is a patter"n" \ |
812 |
|
* "Bug" in cholmod_horzcat()/vertcat(): returns patter"n" matrix if one of them is */ \ |
813 |
|
Rboolean ok; \ |
814 |
|
if(Rk_x == -3) { \ |
815 |
|
ok = chm_MOD_xtype(CHOLMOD_REAL, chx, &c); Rk_x = 0; \ |
816 |
|
} else if(Rk_y == -3) { \ |
817 |
|
ok = chm_MOD_xtype(CHOLMOD_REAL, chy, &c); Rk_y = 0; \ |
818 |
|
} else \ |
819 |
|
error(_("Impossible Rk_x/Rk_y in Csparse_%s(), please report"), _KIND_); \ |
820 |
|
if(!ok) \ |
821 |
|
error(_("chm_MOD_xtype() was not successful in Csparse_%s(), please report"), \ |
822 |
|
_KIND_); \ |
823 |
|
} \ |
824 |
|
} \ |
825 |
|
Rkind = /* logical if both x and y are */ (Rk_x == 1 && Rk_y == 1) ? 1 : 0 |
826 |
|
|
827 |
|
CSPARSE_CAT("horzcat"); |
828 |
|
// TODO: currently drops dimnames - and we fix at R level; |
829 |
|
|
830 |
/* TODO: currently drops dimnames - and we fix at R level */ |
return chm_sparse_to_SEXP(cholmod_horzcat(chx, chy, 1, &c), |
|
return chm_sparse_to_SEXP(cholmod_l_horzcat(chx, chy, 1, &c), |
|
831 |
1, 0, Rkind, "", R_NilValue); |
1, 0, Rkind, "", R_NilValue); |
832 |
} |
} |
833 |
|
|
834 |
|
/** @brief Vertical Concatenation - rbind( <Csparse>, <Csparse>) |
835 |
|
*/ |
836 |
SEXP Csparse_vertcat(SEXP x, SEXP y) |
SEXP Csparse_vertcat(SEXP x, SEXP y) |
837 |
{ |
{ |
838 |
CHM_SP chx = AS_CHM_SP__(x), chy = AS_CHM_SP__(y); |
CSPARSE_CAT("vertcat"); |
839 |
int Rk_x = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0, |
// TODO: currently drops dimnames - and we fix at R level; |
|
Rk_y = (chy->xtype != CHOLMOD_PATTERN) ? Real_kind(y) : 0, |
|
|
Rkind = /* logical if both x and y are */ (Rk_x == 1 && Rk_y == 1) ? 1 : 0; |
|
|
R_CheckStack(); |
|
840 |
|
|
841 |
/* TODO: currently drops dimnames - and we fix at R level */ |
return chm_sparse_to_SEXP(cholmod_vertcat(chx, chy, 1, &c), |
|
return chm_sparse_to_SEXP(cholmod_l_vertcat(chx, chy, 1, &c), |
|
842 |
1, 0, Rkind, "", R_NilValue); |
1, 0, Rkind, "", R_NilValue); |
843 |
} |
} |
844 |
|
|
846 |
{ |
{ |
847 |
CHM_SP chx = AS_CHM_SP__(x); |
CHM_SP chx = AS_CHM_SP__(x); |
848 |
int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0; |
int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0; |
849 |
CHM_SP ans = cholmod_l_band(chx, asInteger(k1), asInteger(k2), chx->xtype, &c); |
CHM_SP ans = cholmod_band(chx, asInteger(k1), asInteger(k2), chx->xtype, &c); |
850 |
R_CheckStack(); |
R_CheckStack(); |
851 |
|
|
852 |
return chm_sparse_to_SEXP(ans, 1, 0, Rkind, "", |
return chm_sparse_to_SEXP(ans, 1, 0, Rkind, "", |
864 |
} |
} |
865 |
else { /* unit triangular (diag='U'): "fill the diagonal" & diag:= "N" */ |
else { /* unit triangular (diag='U'): "fill the diagonal" & diag:= "N" */ |
866 |
CHM_SP chx = AS_CHM_SP__(x); |
CHM_SP chx = AS_CHM_SP__(x); |
867 |
CHM_SP eye = cholmod_l_speye(chx->nrow, chx->ncol, chx->xtype, &c); |
CHM_SP eye = cholmod_speye(chx->nrow, chx->ncol, chx->xtype, &c); |
868 |
double one[] = {1, 0}; |
double one[] = {1, 0}; |
869 |
CHM_SP ans = cholmod_l_add(chx, eye, one, one, TRUE, TRUE, &c); |
CHM_SP ans = cholmod_add(chx, eye, one, one, TRUE, TRUE, &c); |
870 |
int uploT = (*uplo_P(x) == 'U') ? 1 : -1; |
int uploT = (*uplo_P(x) == 'U') ? 1 : -1; |
871 |
int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0; |
int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0; |
872 |
|
|
873 |
R_CheckStack(); |
R_CheckStack(); |
874 |
cholmod_l_free_sparse(&eye, &c); |
cholmod_free_sparse(&eye, &c); |
875 |
return chm_sparse_to_SEXP(ans, 1, uploT, Rkind, "N", |
return chm_sparse_to_SEXP(ans, 1, uploT, Rkind, "N", |
876 |
GET_SLOT(x, Matrix_DimNamesSym)); |
GET_SLOT(x, Matrix_DimNamesSym)); |
877 |
} |
} |
888 |
} |
} |
889 |
else { /* triangular with diag='N'): now drop the diagonal */ |
else { /* triangular with diag='N'): now drop the diagonal */ |
890 |
/* duplicate, since chx will be modified: */ |
/* duplicate, since chx will be modified: */ |
891 |
CHM_SP chx = AS_CHM_SP__(duplicate(x)); |
SEXP xx = PROTECT(duplicate(x)); |
892 |
|
CHM_SP chx = AS_CHM_SP__(xx); |
893 |
int uploT = (*uplo_P(x) == 'U') ? 1 : -1, |
int uploT = (*uplo_P(x) == 'U') ? 1 : -1, |
894 |
Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0; |
Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0; |
895 |
R_CheckStack(); |
R_CheckStack(); |
896 |
|
|
897 |
chm_diagN2U(chx, uploT, /* do_realloc */ FALSE); |
chm_diagN2U(chx, uploT, /* do_realloc */ FALSE); |
898 |
|
|
899 |
return chm_sparse_to_SEXP(chx, /*dofree*/ 0/* or 1 ?? */, |
SEXP ans = chm_sparse_to_SEXP(chx, /*dofree*/ 0/* or 1 ?? */, |
900 |
uploT, Rkind, "U", |
uploT, Rkind, "U", |
901 |
GET_SLOT(x, Matrix_DimNamesSym)); |
GET_SLOT(x, Matrix_DimNamesSym)); |
902 |
|
UNPROTECT(1);// only now ! |
903 |
|
return ans; |
904 |
} |
} |
905 |
} |
} |
906 |
|
|
907 |
/** |
/** |
908 |
* "Indexing" aka subsetting : Compute x[i,j], also for vectors i and j |
* Indexing aka subsetting : Compute x[i,j], also for vectors i and j |
909 |
* Working via CHOLMOD_submatrix, see ./CHOLMOD/MatrixOps/cholmod_submatrix.c |
* Working via CHOLMOD_submatrix, see ./CHOLMOD/MatrixOps/cholmod_submatrix.c |
910 |
* @param x CsparseMatrix |
* @param x CsparseMatrix |
911 |
* @param i row indices (0-origin), or NULL (R's) |
* @param i row indices (0-origin), or NULL (R, not C) |
912 |
* @param j columns indices (0-origin), or NULL |
* @param j columns indices (0-origin), or NULL |
913 |
* |
* |
914 |
* @return x[i,j] still CsparseMatrix --- currently, this loses dimnames |
* @return x[i,j] still CsparseMatrix --- currently, this loses dimnames |
926 |
if (csize >= 0 && !isInteger(j)) |
if (csize >= 0 && !isInteger(j)) |
927 |
error(_("Index j must be NULL or integer")); |
error(_("Index j must be NULL or integer")); |
928 |
|
|
929 |
if (chx->stype) /* symmetricMatrix */ |
#define CHM_SUB(_M_, _i_, _j_) \ |
930 |
|
cholmod_submatrix(_M_, \ |
931 |
|
(rsize < 0) ? NULL : INTEGER(_i_), rsize, \ |
932 |
|
(csize < 0) ? NULL : INTEGER(_j_), csize, \ |
933 |
|
TRUE, TRUE, &c) |
934 |
|
CHM_SP ans; |
935 |
|
if (!chx->stype) {/* non-symmetric Matrix */ |
936 |
|
ans = CHM_SUB(chx, i, j); |
937 |
|
} |
938 |
|
else { |
939 |
/* for now, cholmod_submatrix() only accepts "generalMatrix" */ |
/* for now, cholmod_submatrix() only accepts "generalMatrix" */ |
940 |
chx = cholmod_l_copy(chx, /* stype: */ 0, chx->xtype, &c); |
CHM_SP tmp = cholmod_copy(chx, /* stype: */ 0, chx->xtype, &c); |
941 |
|
ans = CHM_SUB(tmp, i, j); |
942 |
|
cholmod_free_sparse(&tmp, &c); |
943 |
|
} |
944 |
|
|
945 |
return chm_sparse_to_SEXP(cholmod_l_submatrix(chx, |
// "FIXME": currently dropping dimnames, and adding them afterwards in R : |
946 |
(rsize < 0) ? NULL : INTEGER(i), rsize, |
/* // dimnames: */ |
947 |
(csize < 0) ? NULL : INTEGER(j), csize, |
/* SEXP x_dns = GET_SLOT(x, Matrix_DimNamesSym), */ |
948 |
TRUE, TRUE, &c), |
/* dn = PROTECT(allocVector(VECSXP, 2)); */ |
949 |
1, 0, Rkind, "", |
return chm_sparse_to_SEXP(ans, 1, 0, Rkind, "", /* dimnames: */ R_NilValue); |
|
/* FIXME: drops dimnames */ R_NilValue); |
|
950 |
} |
} |
951 |
|
|
952 |
|
#define _d_Csp_ |
953 |
|
#include "t_Csparse_subassign.c" |
954 |
|
|
955 |
|
#define _l_Csp_ |
956 |
|
#include "t_Csparse_subassign.c" |
957 |
|
|
958 |
|
#define _i_Csp_ |
959 |
|
#include "t_Csparse_subassign.c" |
960 |
|
|
961 |
|
#define _n_Csp_ |
962 |
|
#include "t_Csparse_subassign.c" |
963 |
|
|
964 |
|
#define _z_Csp_ |
965 |
|
#include "t_Csparse_subassign.c" |
966 |
|
|
967 |
|
|
968 |
|
|
969 |
SEXP Csparse_MatrixMarket(SEXP x, SEXP fname) |
SEXP Csparse_MatrixMarket(SEXP x, SEXP fname) |
970 |
{ |
{ |
971 |
FILE *f = fopen(CHAR(asChar(fname)), "w"); |
FILE *f = fopen(CHAR(asChar(fname)), "w"); |
973 |
if (!f) |
if (!f) |
974 |
error(_("failure to open file \"%s\" for writing"), |
error(_("failure to open file \"%s\" for writing"), |
975 |
CHAR(asChar(fname))); |
CHAR(asChar(fname))); |
976 |
if (!cholmod_l_write_sparse(f, AS_CHM_SP(x), |
if (!cholmod_write_sparse(f, AS_CHM_SP(x), |
977 |
(CHM_SP)NULL, (char*) NULL, &c)) |
(CHM_SP)NULL, (char*) NULL, &c)) |
978 |
error(_("cholmod_l_write_sparse returned error code")); |
error(_("cholmod_write_sparse returned error code")); |
979 |
fclose(f); |
fclose(f); |
980 |
return R_NilValue; |
return R_NilValue; |
981 |
} |
} |
993 |
* |
* |
994 |
* @return a SEXP, either a (double) number or a length n-vector of diagonal entries |
* @return a SEXP, either a (double) number or a length n-vector of diagonal entries |
995 |
*/ |
*/ |
996 |
SEXP diag_tC_ptr(int n, int *x_p, double *x_x, int *perm, SEXP resultKind) |
SEXP diag_tC_ptr(int n, int *x_p, double *x_x, Rboolean is_U, int *perm, |
997 |
/* ^^^^^^ FIXME[Generalize] to int / ... */ |
/* ^^^^^^ FIXME[Generalize] to int / ... */ |
998 |
|
SEXP resultKind) |
999 |
{ |
{ |
1000 |
const char* res_ch = CHAR(STRING_ELT(resultKind,0)); |
const char* res_ch = CHAR(STRING_ELT(resultKind,0)); |
1001 |
enum diag_kind { diag, diag_backpermuted, trace, prod, sum_log |
enum diag_kind { diag, diag_backpermuted, trace, prod, sum_log, min, max, range |
1002 |
} res_kind = ((!strcmp(res_ch, "trace")) ? trace : |
} res_kind = ((!strcmp(res_ch, "trace")) ? trace : |
1003 |
((!strcmp(res_ch, "sumLog")) ? sum_log : |
((!strcmp(res_ch, "sumLog")) ? sum_log : |
1004 |
((!strcmp(res_ch, "prod")) ? prod : |
((!strcmp(res_ch, "prod")) ? prod : |
1005 |
|
((!strcmp(res_ch, "min")) ? min : |
1006 |
|
((!strcmp(res_ch, "max")) ? max : |
1007 |
|
((!strcmp(res_ch, "range")) ? range : |
1008 |
((!strcmp(res_ch, "diag")) ? diag : |
((!strcmp(res_ch, "diag")) ? diag : |
1009 |
((!strcmp(res_ch, "diagBack")) ? diag_backpermuted : |
((!strcmp(res_ch, "diagBack")) ? diag_backpermuted : |
1010 |
-1))))); |
-1)))))))); |
1011 |
int i, n_x, i_from = 0; |
int i, n_x, i_from; |
1012 |
SEXP ans = PROTECT(allocVector(REALSXP, |
SEXP ans = PROTECT(allocVector(REALSXP, |
1013 |
/* ^^^^ FIXME[Generalize] */ |
/* ^^^^ FIXME[Generalize] */ |
1014 |
(res_kind == diag || |
(res_kind == diag || |
1015 |
res_kind == diag_backpermuted) ? n : 1)); |
res_kind == diag_backpermuted) ? n : |
1016 |
|
(res_kind == range ? 2 : 1))); |
1017 |
double *v = REAL(ans); |
double *v = REAL(ans); |
1018 |
/* ^^^^^^ ^^^^ FIXME[Generalize] */ |
/* ^^^^^^ ^^^^ FIXME[Generalize] */ |
1019 |
|
|
1020 |
|
i_from = (is_U ? -1 : 0); |
1021 |
|
|
1022 |
#define for_DIAG(v_ASSIGN) \ |
#define for_DIAG(v_ASSIGN) \ |
1023 |
for(i = 0; i < n; i++, i_from += n_x) { \ |
for(i = 0; i < n; i++) { \ |
1024 |
/* looking at i-th column */ \ |
/* looking at i-th column */ \ |
1025 |
n_x = x_p[i+1] - x_p[i];/* #{entries} in this column */ \ |
n_x = x_p[i+1] - x_p[i];/* #{entries} in this column */ \ |
1026 |
|
if( is_U) i_from += n_x; \ |
1027 |
v_ASSIGN; \ |
v_ASSIGN; \ |
1028 |
|
if(!is_U) i_from += n_x; \ |
1029 |
} |
} |
1030 |
|
|
1031 |
/* NOTA BENE: we assume -- uplo = "L" i.e. lower triangular matrix |
/* NOTA BENE: we assume -- uplo = "L" i.e. lower triangular matrix |
1032 |
* for uplo = "U" (makes sense with a "dtCMatrix" !), |
* for uplo = "U" (makes sense with a "dtCMatrix" !), |
1033 |
* should use x_x[i_from + (nx - 1)] instead of x_x[i_from], |
* should use x_x[i_from + (n_x - 1)] instead of x_x[i_from], |
1034 |
* where nx = (x_p[i+1] - x_p[i]) |
* where n_x = (x_p[i+1] - x_p[i]) |
1035 |
*/ |
*/ |
1036 |
|
|
1037 |
switch(res_kind) { |
switch(res_kind) { |
1038 |
case trace: |
case trace: // = sum |
1039 |
v[0] = 0.; |
v[0] = 0.; |
1040 |
for_DIAG(v[0] += x_x[i_from]); |
for_DIAG(v[0] += x_x[i_from]); |
1041 |
break; |
break; |
1050 |
for_DIAG(v[0] *= x_x[i_from]); |
for_DIAG(v[0] *= x_x[i_from]); |
1051 |
break; |
break; |
1052 |
|
|
1053 |
|
case min: |
1054 |
|
v[0] = R_PosInf; |
1055 |
|
for_DIAG(if(v[0] > x_x[i_from]) v[0] = x_x[i_from]); |
1056 |
|
break; |
1057 |
|
|
1058 |
|
case max: |
1059 |
|
v[0] = R_NegInf; |
1060 |
|
for_DIAG(if(v[0] < x_x[i_from]) v[0] = x_x[i_from]); |
1061 |
|
break; |
1062 |
|
|
1063 |
|
case range: |
1064 |
|
v[0] = R_PosInf; |
1065 |
|
v[1] = R_NegInf; |
1066 |
|
for_DIAG(if(v[0] > x_x[i_from]) v[0] = x_x[i_from]; |
1067 |
|
if(v[1] < x_x[i_from]) v[1] = x_x[i_from]); |
1068 |
|
break; |
1069 |
|
|
1070 |
case diag: |
case diag: |
1071 |
for_DIAG(v[i] = x_x[i_from]); |
for_DIAG(v[i] = x_x[i_from]); |
1072 |
break; |
break; |
1074 |
case diag_backpermuted: |
case diag_backpermuted: |
1075 |
for_DIAG(v[i] = x_x[i_from]); |
for_DIAG(v[i] = x_x[i_from]); |
1076 |
|
|
1077 |
warning(_("resultKind = 'diagBack' (back-permuted) is experimental")); |
warning(_("%s = '%s' (back-permuted) is experimental"), |
1078 |
|
"resultKind", "diagBack"); |
1079 |
/* now back_permute : */ |
/* now back_permute : */ |
1080 |
for(i = 0; i < n; i++) { |
for(i = 0; i < n; i++) { |
1081 |
double tmp = v[i]; v[i] = v[perm[i]]; v[perm[i]] = tmp; |
double tmp = v[i]; v[i] = v[perm[i]]; v[perm[i]] = tmp; |
1096 |
* Extract the diagonal entries from *triangular* Csparse matrix __or__ a |
* Extract the diagonal entries from *triangular* Csparse matrix __or__ a |
1097 |
* cholmod_sparse factor (LDL = TRUE). |
* cholmod_sparse factor (LDL = TRUE). |
1098 |
* |
* |
1099 |
|
* @param obj -- now a cholmod_sparse factor or a dtCMatrix |
1100 |
* @param pslot 'p' (column pointer) slot of Csparse matrix/factor |
* @param pslot 'p' (column pointer) slot of Csparse matrix/factor |
1101 |
* @param xslot 'x' (non-zero entries) slot of Csparse matrix/factor |
* @param xslot 'x' (non-zero entries) slot of Csparse matrix/factor |
1102 |
* @param perm_slot 'perm' (= permutation vector) slot of corresponding CHMfactor; |
* @param perm_slot 'perm' (= permutation vector) slot of corresponding CHMfactor; |
1105 |
* |
* |
1106 |
* @return a SEXP, either a (double) number or a length n-vector of diagonal entries |
* @return a SEXP, either a (double) number or a length n-vector of diagonal entries |
1107 |
*/ |
*/ |
1108 |
SEXP diag_tC(SEXP pslot, SEXP xslot, SEXP perm_slot, SEXP resultKind) |
SEXP diag_tC(SEXP obj, SEXP resultKind) |
1109 |
{ |
{ |
1110 |
|
|
1111 |
|
SEXP |
1112 |
|
pslot = GET_SLOT(obj, Matrix_pSym), |
1113 |
|
xslot = GET_SLOT(obj, Matrix_xSym); |
1114 |
|
Rboolean is_U = (R_has_slot(obj, Matrix_uploSym) && |
1115 |
|
*CHAR(asChar(GET_SLOT(obj, Matrix_uploSym))) == 'U'); |
1116 |
int n = length(pslot) - 1, /* n = ncol(.) = nrow(.) */ |
int n = length(pslot) - 1, /* n = ncol(.) = nrow(.) */ |
1117 |
*x_p = INTEGER(pslot), |
*x_p = INTEGER(pslot), pp = -1, *perm; |
|
*perm = INTEGER(perm_slot); |
|
1118 |
double *x_x = REAL(xslot); |
double *x_x = REAL(xslot); |
1119 |
/* ^^^^^^ ^^^^ FIXME[Generalize] to INTEGER(.) / LOGICAL(.) / ... xslot !*/ |
/* ^^^^^^ ^^^^ FIXME[Generalize] to INTEGER(.) / LOGICAL(.) / ... xslot !*/ |
1120 |
|
|
1121 |
return diag_tC_ptr(n, x_p, x_x, perm, resultKind); |
if(R_has_slot(obj, Matrix_permSym)) |
1122 |
|
perm = INTEGER(GET_SLOT(obj, Matrix_permSym)); |
1123 |
|
else perm = &pp; |
1124 |
|
|
1125 |
|
return diag_tC_ptr(n, x_p, x_x, is_U, perm, resultKind); |
1126 |
} |
} |
1127 |
|
|
1128 |
|
|
1129 |
/** |
/** |
1130 |
* Create a Csparse matrix object from indices and/or pointers. |
* Create a Csparse matrix object from indices and/or pointers. |
1131 |
* |
* |
1227 |
if (cls[1] != 'g') |
if (cls[1] != 'g') |
1228 |
error(_("Only 'g'eneral sparse matrix types allowed")); |
error(_("Only 'g'eneral sparse matrix types allowed")); |
1229 |
/* allocate and populate the triplet */ |
/* allocate and populate the triplet */ |
1230 |
T = cholmod_l_allocate_triplet((size_t)nrow, (size_t)ncol, (size_t)nnz, 0, |
T = cholmod_allocate_triplet((size_t)nrow, (size_t)ncol, (size_t)nnz, 0, |
1231 |
xtype, &c); |
xtype, &c); |
1232 |
T->x = x; |
T->x = x; |
1233 |
tri = (int*)T->i; |
tri = (int*)T->i; |
1237 |
trj[ii] = j[ii] - ((!mj && index1) ? 1 : 0); |
trj[ii] = j[ii] - ((!mj && index1) ? 1 : 0); |
1238 |
} |
} |
1239 |
/* create the cholmod_sparse structure */ |
/* create the cholmod_sparse structure */ |
1240 |
A = cholmod_l_triplet_to_sparse(T, nnz, &c); |
A = cholmod_triplet_to_sparse(T, nnz, &c); |
1241 |
cholmod_l_free_triplet(&T, &c); |
cholmod_free_triplet(&T, &c); |
1242 |
/* copy the information to the SEXP */ |
/* copy the information to the SEXP */ |
1243 |
ans = PROTECT(NEW_OBJECT(MAKE_CLASS(cls))); |
ans = PROTECT(NEW_OBJECT(MAKE_CLASS(cls))); |
1244 |
/* FIXME: This has been copied from chm_sparse_to_SEXP in chm_common.c */ |
// FIXME: This has been copied from chm_sparse_to_SEXP in chm_common.c |
1245 |
/* allocate and copy common slots */ |
/* allocate and copy common slots */ |
1246 |
nnz = cholmod_l_nnz(A, &c); |
nnz = cholmod_nnz(A, &c); |
1247 |
dims = INTEGER(ALLOC_SLOT(ans, Matrix_DimSym, INTSXP, 2)); |
dims = INTEGER(ALLOC_SLOT(ans, Matrix_DimSym, INTSXP, 2)); |
1248 |
dims[0] = A->nrow; dims[1] = A->ncol; |
dims[0] = A->nrow; dims[1] = A->ncol; |
1249 |
Memcpy(INTEGER(ALLOC_SLOT(ans, Matrix_pSym, INTSXP, A->ncol + 1)), (int*)A->p, A->ncol + 1); |
Memcpy(INTEGER(ALLOC_SLOT(ans, Matrix_pSym, INTSXP, A->ncol + 1)), (int*)A->p, A->ncol + 1); |
1255 |
case 'l': |
case 'l': |
1256 |
error(_("code not yet written for cls = \"lgCMatrix\"")); |
error(_("code not yet written for cls = \"lgCMatrix\"")); |
1257 |
} |
} |
1258 |
cholmod_l_free_sparse(&A, &c); |
/* FIXME: dimnames are *NOT* put there yet (if non-NULL) */ |
1259 |
|
cholmod_free_sparse(&A, &c); |
1260 |
UNPROTECT(1); |
UNPROTECT(1); |
1261 |
return ans; |
return ans; |
1262 |
} |
} |