1 |
/* Sparse matrices in compressed column-oriented form */ |
/* Sparse matrices in compressed column-oriented form */ |
2 |
|
|
3 |
#include "Csparse.h" |
#include "Csparse.h" |
4 |
#include "Tsparse.h" |
#include "Tsparse.h" |
5 |
#include "chm_common.h" |
#include "chm_common.h" |
37 |
return Csparse_validate_(x, FALSE); |
return Csparse_validate_(x, FALSE); |
38 |
} |
} |
39 |
|
|
|
SEXP Csparse_validate2(SEXP x, SEXP maybe_modify) { |
|
|
return Csparse_validate_(x, asLogical(maybe_modify)); |
|
|
} |
|
40 |
|
|
41 |
SEXP Csparse_validate_(SEXP x, Rboolean maybe_modify) |
#define _t_Csparse_validate |
42 |
{ |
#include "t_Csparse_validate.c" |
|
/* NB: we do *NOT* check a potential 'x' slot here, at all */ |
|
|
SEXP pslot = GET_SLOT(x, Matrix_pSym), |
|
|
islot = GET_SLOT(x, Matrix_iSym); |
|
|
Rboolean sorted, strictly; |
|
|
int j, k, |
|
|
*dims = INTEGER(GET_SLOT(x, Matrix_DimSym)), |
|
|
nrow = dims[0], |
|
|
ncol = dims[1], |
|
|
*xp = INTEGER(pslot), |
|
|
*xi = INTEGER(islot); |
|
43 |
|
|
44 |
if (length(pslot) != dims[1] + 1) |
#define _t_Csparse_sort |
45 |
return mkString(_("slot p must have length = ncol(.) + 1")); |
#include "t_Csparse_validate.c" |
|
if (xp[0] != 0) |
|
|
return mkString(_("first element of slot p must be zero")); |
|
|
if (length(islot) < xp[ncol]) /* allow larger slots from over-allocation!*/ |
|
|
return |
|
|
mkString(_("last element of slot p must match length of slots i and x")); |
|
|
for (j = 0; j < xp[ncol]; j++) { |
|
|
if (xi[j] < 0 || xi[j] >= nrow) |
|
|
return mkString(_("all row indices must be between 0 and nrow-1")); |
|
|
} |
|
|
sorted = TRUE; strictly = TRUE; |
|
|
for (j = 0; j < ncol; j++) { |
|
|
if (xp[j] > xp[j + 1]) |
|
|
return mkString(_("slot p must be non-decreasing")); |
|
|
if(sorted) /* only act if >= 2 entries in column j : */ |
|
|
for (k = xp[j] + 1; k < xp[j + 1]; k++) { |
|
|
if (xi[k] < xi[k - 1]) |
|
|
sorted = FALSE; |
|
|
else if (xi[k] == xi[k - 1]) |
|
|
strictly = FALSE; |
|
|
} |
|
|
} |
|
|
if (!sorted) { |
|
|
if(maybe_modify) { |
|
|
CHM_SP chx = (CHM_SP) alloca(sizeof(cholmod_sparse)); |
|
|
R_CheckStack(); |
|
|
as_cholmod_sparse(chx, x, FALSE, TRUE);/*-> cholmod_l_sort() ! */ |
|
|
/* as chx = AS_CHM_SP__(x) but ^^^^ sorting x in_place !!! */ |
|
46 |
|
|
47 |
/* Now re-check that row indices are *strictly* increasing |
// R: .validateCsparse(x, sort.if.needed = FALSE) : |
48 |
* (and not just increasing) within each column : */ |
SEXP Csparse_validate2(SEXP x, SEXP maybe_modify) { |
49 |
for (j = 0; j < ncol; j++) { |
return Csparse_validate_(x, asLogical(maybe_modify)); |
|
for (k = xp[j] + 1; k < xp[j + 1]; k++) |
|
|
if (xi[k] == xi[k - 1]) |
|
|
return mkString(_("slot i is not *strictly* increasing inside a column (even after cholmod_l_sort)")); |
|
|
} |
|
|
} else { /* no modifying sorting : */ |
|
|
return mkString(_("row indices are not sorted within columns")); |
|
|
} |
|
|
} else if(!strictly) { /* sorted, but not strictly */ |
|
|
return mkString(_("slot i is not *strictly* increasing inside a column")); |
|
50 |
} |
} |
51 |
return ScalarLogical(1); |
|
52 |
|
// R: Matrix:::.sortCsparse(x) : |
53 |
|
SEXP Csparse_sort (SEXP x) { |
54 |
|
int ok = Csparse_sort_2(x, TRUE); // modifying x directly |
55 |
|
if(!ok) warning(_("Csparse_sort(x): x is not a valid (apart from sorting) CsparseMatrix")); |
56 |
|
return x; |
57 |
} |
} |
58 |
|
|
59 |
SEXP Rsparse_validate(SEXP x) |
SEXP Rsparse_validate(SEXP x) |
93 |
} |
} |
94 |
} |
} |
95 |
if (!sorted) |
if (!sorted) |
96 |
/* cannot easily use cholmod_l_sort(.) ... -> "error out" :*/ |
/* cannot easily use cholmod_sort(.) ... -> "error out" :*/ |
97 |
return mkString(_("slot j is not increasing inside a column")); |
return mkString(_("slot j is not increasing inside a column")); |
98 |
else if(!strictly) /* sorted, but not strictly */ |
else if(!strictly) /* sorted, but not strictly */ |
99 |
return mkString(_("slot j is not *strictly* increasing inside a column")); |
return mkString(_("slot j is not *strictly* increasing inside a column")); |
111 |
/* This loses the symmetry property, since cholmod_dense has none, |
/* This loses the symmetry property, since cholmod_dense has none, |
112 |
* BUT, much worse (FIXME!), it also transforms CHOLMOD_PATTERN ("n") matrices |
* BUT, much worse (FIXME!), it also transforms CHOLMOD_PATTERN ("n") matrices |
113 |
* to numeric (CHOLMOD_REAL) ones : */ |
* to numeric (CHOLMOD_REAL) ones : */ |
114 |
CHM_DN chxd = cholmod_l_sparse_to_dense(chxs, &c); |
CHM_DN chxd = cholmod_sparse_to_dense(chxs, &c); |
115 |
int Rkind = (chxs->xtype == CHOLMOD_PATTERN)? -1 : Real_kind(x); |
int Rkind = (chxs->xtype == CHOLMOD_PATTERN)? -1 : Real_kind(x); |
116 |
R_CheckStack(); |
R_CheckStack(); |
117 |
|
|
118 |
return chm_dense_to_SEXP(chxd, 1, Rkind, GET_SLOT(x, Matrix_DimNamesSym)); |
return chm_dense_to_SEXP(chxd, 1, Rkind, GET_SLOT(x, Matrix_DimNamesSym)); |
119 |
} |
} |
120 |
|
|
121 |
|
// FIXME: do not go via CHM (should not be too hard, to just *drop* the x-slot, right? |
122 |
SEXP Csparse_to_nz_pattern(SEXP x, SEXP tri) |
SEXP Csparse_to_nz_pattern(SEXP x, SEXP tri) |
123 |
{ |
{ |
124 |
CHM_SP chxs = AS_CHM_SP__(x); |
CHM_SP chxs = AS_CHM_SP__(x); |
125 |
CHM_SP chxcp = cholmod_l_copy(chxs, chxs->stype, CHOLMOD_PATTERN, &c); |
CHM_SP chxcp = cholmod_copy(chxs, chxs->stype, CHOLMOD_PATTERN, &c); |
126 |
int tr = asLogical(tri); |
int tr = asLogical(tri); |
127 |
R_CheckStack(); |
R_CheckStack(); |
128 |
|
|
132 |
GET_SLOT(x, Matrix_DimNamesSym)); |
GET_SLOT(x, Matrix_DimNamesSym)); |
133 |
} |
} |
134 |
|
|
135 |
SEXP Csparse_to_matrix(SEXP x) |
// n.CMatrix --> [dli].CMatrix (not going through CHM!) |
136 |
|
SEXP nz_pattern_to_Csparse(SEXP x, SEXP res_kind) |
137 |
{ |
{ |
138 |
return chm_dense_to_matrix(cholmod_l_sparse_to_dense(AS_CHM_SP__(x), &c), |
return nz2Csparse(x, asInteger(res_kind)); |
139 |
|
} |
140 |
|
// n.CMatrix --> [dli].CMatrix (not going through CHM!) |
141 |
|
SEXP nz2Csparse(SEXP x, enum x_slot_kind r_kind) |
142 |
|
{ |
143 |
|
const char *cl_x = class_P(x); |
144 |
|
if(cl_x[0] != 'n') error(_("not a 'n.CMatrix'")); |
145 |
|
if(cl_x[2] != 'C') error(_("not a CsparseMatrix")); |
146 |
|
int nnz = LENGTH(GET_SLOT(x, Matrix_iSym)); |
147 |
|
SEXP ans; |
148 |
|
char *ncl = alloca(strlen(cl_x) + 1); /* not much memory required */ |
149 |
|
strcpy(ncl, cl_x); |
150 |
|
double *dx_x; int *ix_x; |
151 |
|
ncl[0] = (r_kind == x_double ? 'd' : |
152 |
|
(r_kind == x_logical ? 'l' : |
153 |
|
/* else (for now): r_kind == x_integer : */ 'i')); |
154 |
|
PROTECT(ans = NEW_OBJECT(MAKE_CLASS(ncl))); |
155 |
|
// create a correct 'x' slot: |
156 |
|
switch(r_kind) { |
157 |
|
int i; |
158 |
|
case x_double: // 'd' |
159 |
|
dx_x = REAL(ALLOC_SLOT(ans, Matrix_xSym, REALSXP, nnz)); |
160 |
|
for (i=0; i < nnz; i++) dx_x[i] = 1.; |
161 |
|
break; |
162 |
|
case x_logical: // 'l' |
163 |
|
ix_x = LOGICAL(ALLOC_SLOT(ans, Matrix_xSym, LGLSXP, nnz)); |
164 |
|
for (i=0; i < nnz; i++) ix_x[i] = TRUE; |
165 |
|
break; |
166 |
|
case x_integer: // 'i' |
167 |
|
ix_x = INTEGER(ALLOC_SLOT(ans, Matrix_xSym, INTSXP, nnz)); |
168 |
|
for (i=0; i < nnz; i++) ix_x[i] = 1; |
169 |
|
break; |
170 |
|
|
171 |
|
default: |
172 |
|
error(_("nz2Csparse(): invalid/non-implemented r_kind = %d"), |
173 |
|
r_kind); |
174 |
|
} |
175 |
|
|
176 |
|
// now copy all other slots : |
177 |
|
slot_dup(ans, x, Matrix_iSym); |
178 |
|
slot_dup(ans, x, Matrix_pSym); |
179 |
|
slot_dup(ans, x, Matrix_DimSym); |
180 |
|
slot_dup(ans, x, Matrix_DimNamesSym); |
181 |
|
if(ncl[1] != 'g') { // symmetric or triangular ... |
182 |
|
slot_dup_if_has(ans, x, Matrix_uploSym); |
183 |
|
slot_dup_if_has(ans, x, Matrix_diagSym); |
184 |
|
} |
185 |
|
UNPROTECT(1); |
186 |
|
return ans; |
187 |
|
} |
188 |
|
|
189 |
|
SEXP Csparse_to_matrix(SEXP x, SEXP chk) |
190 |
|
{ |
191 |
|
return chm_dense_to_matrix(cholmod_sparse_to_dense(AS_CHM_SP2(x, asLogical(chk)), &c), |
192 |
1 /*do_free*/, GET_SLOT(x, Matrix_DimNamesSym)); |
1 /*do_free*/, GET_SLOT(x, Matrix_DimNamesSym)); |
193 |
} |
} |
194 |
|
SEXP Csparse_to_vector(SEXP x) |
195 |
|
{ |
196 |
|
return chm_dense_to_vector(cholmod_sparse_to_dense(AS_CHM_SP__(x), &c), 1); |
197 |
|
} |
198 |
|
|
199 |
SEXP Csparse_to_Tsparse(SEXP x, SEXP tri) |
SEXP Csparse_to_Tsparse(SEXP x, SEXP tri) |
200 |
{ |
{ |
201 |
CHM_SP chxs = AS_CHM_SP__(x); |
CHM_SP chxs = AS_CHM_SP__(x); |
202 |
CHM_TR chxt = cholmod_l_sparse_to_triplet(chxs, &c); |
CHM_TR chxt = cholmod_sparse_to_triplet(chxs, &c); |
203 |
int tr = asLogical(tri); |
int tr = asLogical(tri); |
204 |
int Rkind = (chxs->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0; |
int Rkind = (chxs->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0; |
205 |
R_CheckStack(); |
R_CheckStack(); |
219 |
|
|
220 |
if (!(chx->stype)) |
if (!(chx->stype)) |
221 |
error(_("Nonsymmetric matrix in Csparse_symmetric_to_general")); |
error(_("Nonsymmetric matrix in Csparse_symmetric_to_general")); |
222 |
chgx = cholmod_l_copy(chx, /* stype: */ 0, chx->xtype, &c); |
chgx = cholmod_copy(chx, /* stype: */ 0, chx->xtype, &c); |
223 |
/* xtype: pattern, "real", complex or .. */ |
/* xtype: pattern, "real", complex or .. */ |
224 |
return chm_sparse_to_SEXP(chgx, 1, 0, Rkind, "", |
return chm_sparse_to_SEXP(chgx, 1, 0, Rkind, "", |
225 |
GET_SLOT(x, Matrix_DimNamesSym)); |
GET_SLOT(x, Matrix_DimNamesSym)); |
227 |
|
|
228 |
SEXP Csparse_general_to_symmetric(SEXP x, SEXP uplo) |
SEXP Csparse_general_to_symmetric(SEXP x, SEXP uplo) |
229 |
{ |
{ |
230 |
|
int *adims = INTEGER(GET_SLOT(x, Matrix_DimSym)), n = adims[0]; |
231 |
|
if(n != adims[1]) { |
232 |
|
error(_("Csparse_general_to_symmetric(): matrix is not square!")); |
233 |
|
return R_NilValue; /* -Wall */ |
234 |
|
} |
235 |
CHM_SP chx = AS_CHM_SP__(x), chgx; |
CHM_SP chx = AS_CHM_SP__(x), chgx; |
236 |
int uploT = (*CHAR(STRING_ELT(uplo,0)) == 'U') ? 1 : -1; |
int uploT = (*CHAR(asChar(uplo)) == 'U') ? 1 : -1; |
237 |
int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0; |
int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0; |
238 |
R_CheckStack(); |
R_CheckStack(); |
239 |
|
chgx = cholmod_copy(chx, /* stype: */ uploT, chx->xtype, &c); |
240 |
|
|
241 |
chgx = cholmod_l_copy(chx, /* stype: */ uploT, chx->xtype, &c); |
/* need _symmetric_ dimnames */ |
242 |
|
SEXP dns = PROTECT(duplicate(GET_SLOT(x, Matrix_DimNamesSym))), |
243 |
|
nms_dns = getAttrib(dns, R_NamesSymbol); |
244 |
|
if(!equal_string_vectors(VECTOR_ELT(dns, 0), |
245 |
|
VECTOR_ELT(dns, 1))) { |
246 |
|
if(uploT == 1) |
247 |
|
SET_VECTOR_ELT(dns, 0, VECTOR_ELT(dns,1)); |
248 |
|
else |
249 |
|
SET_VECTOR_ELT(dns, 1, VECTOR_ELT(dns,0)); |
250 |
|
} |
251 |
|
if(!isNull(nms_dns) && // names(dimnames(.)) : |
252 |
|
!R_compute_identical(STRING_ELT(nms_dns, 0), |
253 |
|
STRING_ELT(nms_dns, 1), 15)) { |
254 |
|
if(uploT == 1) |
255 |
|
SET_STRING_ELT(nms_dns, 0, STRING_ELT(nms_dns,1)); |
256 |
|
else |
257 |
|
SET_STRING_ELT(nms_dns, 1, STRING_ELT(nms_dns,0)); |
258 |
|
setAttrib(dns, R_NamesSymbol, nms_dns); |
259 |
|
} |
260 |
|
|
261 |
|
UNPROTECT(1); |
262 |
/* xtype: pattern, "real", complex or .. */ |
/* xtype: pattern, "real", complex or .. */ |
263 |
return chm_sparse_to_SEXP(chgx, 1, 0, Rkind, "", |
return chm_sparse_to_SEXP(chgx, 1, 0, Rkind, "", dns); |
|
GET_SLOT(x, Matrix_DimNamesSym)); |
|
264 |
} |
} |
265 |
|
|
266 |
SEXP Csparse_transpose(SEXP x, SEXP tri) |
SEXP Csparse_transpose(SEXP x, SEXP tri) |
269 |
* since cholmod (& cs) lacks sparse 'int' matrices */ |
* since cholmod (& cs) lacks sparse 'int' matrices */ |
270 |
CHM_SP chx = AS_CHM_SP__(x); |
CHM_SP chx = AS_CHM_SP__(x); |
271 |
int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0; |
int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0; |
272 |
CHM_SP chxt = cholmod_l_transpose(chx, chx->xtype, &c); |
CHM_SP chxt = cholmod_transpose(chx, chx->xtype, &c); |
273 |
SEXP dn = PROTECT(duplicate(GET_SLOT(x, Matrix_DimNamesSym))), tmp; |
SEXP dn = PROTECT(duplicate(GET_SLOT(x, Matrix_DimNamesSym))), tmp; |
274 |
int tr = asLogical(tri); |
int tr = asLogical(tri); |
275 |
R_CheckStack(); |
R_CheckStack(); |
277 |
tmp = VECTOR_ELT(dn, 0); /* swap the dimnames */ |
tmp = VECTOR_ELT(dn, 0); /* swap the dimnames */ |
278 |
SET_VECTOR_ELT(dn, 0, VECTOR_ELT(dn, 1)); |
SET_VECTOR_ELT(dn, 0, VECTOR_ELT(dn, 1)); |
279 |
SET_VECTOR_ELT(dn, 1, tmp); |
SET_VECTOR_ELT(dn, 1, tmp); |
280 |
|
if(!isNull(tmp = getAttrib(dn, R_NamesSymbol))) { // swap names(dimnames(.)): |
281 |
|
SEXP nms_dns = PROTECT(allocVector(VECSXP, 2)); |
282 |
|
SET_VECTOR_ELT(nms_dns, 1, STRING_ELT(tmp, 0)); |
283 |
|
SET_VECTOR_ELT(nms_dns, 0, STRING_ELT(tmp, 1)); |
284 |
|
setAttrib(dn, R_NamesSymbol, nms_dns); |
285 |
|
UNPROTECT(1); |
286 |
|
} |
287 |
UNPROTECT(1); |
UNPROTECT(1); |
288 |
return chm_sparse_to_SEXP(chxt, 1, /* SWAP 'uplo' for triangular */ |
return chm_sparse_to_SEXP(chxt, 1, /* SWAP 'uplo' for triangular */ |
289 |
tr ? ((*uplo_P(x) == 'U') ? -1 : 1) : 0, |
tr ? ((*uplo_P(x) == 'U') ? -1 : 1) : 0, |
295 |
CHM_SP |
CHM_SP |
296 |
cha = AS_CHM_SP(a), |
cha = AS_CHM_SP(a), |
297 |
chb = AS_CHM_SP(b), |
chb = AS_CHM_SP(b), |
298 |
chc = cholmod_l_ssmult(cha, chb, /*out_stype:*/ 0, |
chc = cholmod_ssmult(cha, chb, /*out_stype:*/ 0, |
299 |
/* values:= is_numeric (T/F) */ cha->xtype > 0, |
/* values:= is_numeric (T/F) */ cha->xtype > 0, |
300 |
/*out sorted:*/ 1, &c); |
/*out sorted:*/ 1, &c); |
301 |
const char *cl_a = class_P(a), *cl_b = class_P(b); |
const char *cl_a = class_P(a), *cl_b = class_P(b); |
346 |
SEXP dn = PROTECT(allocVector(VECSXP, 2)); |
SEXP dn = PROTECT(allocVector(VECSXP, 2)); |
347 |
R_CheckStack(); |
R_CheckStack(); |
348 |
|
|
349 |
chTr = cholmod_l_transpose((tr) ? chb : cha, chb->xtype, &c); |
chTr = cholmod_transpose((tr) ? chb : cha, chb->xtype, &c); |
350 |
chc = cholmod_l_ssmult((tr) ? cha : chTr, (tr) ? chTr : chb, |
chc = cholmod_ssmult((tr) ? cha : chTr, (tr) ? chTr : chb, |
351 |
/*out_stype:*/ 0, cha->xtype, /*out sorted:*/ 1, &c); |
/*out_stype:*/ 0, cha->xtype, /*out sorted:*/ 1, &c); |
352 |
cholmod_l_free_sparse(&chTr, &c); |
cholmod_free_sparse(&chTr, &c); |
353 |
|
|
354 |
/* Preserve triangularity and unit-triangularity if appropriate; |
/* Preserve triangularity and unit-triangularity if appropriate; |
355 |
* see Csparse_Csparse_prod() for comments */ |
* see Csparse_Csparse_prod() for comments */ |
373 |
SEXP Csparse_dense_prod(SEXP a, SEXP b) |
SEXP Csparse_dense_prod(SEXP a, SEXP b) |
374 |
{ |
{ |
375 |
CHM_SP cha = AS_CHM_SP(a); |
CHM_SP cha = AS_CHM_SP(a); |
376 |
SEXP b_M = PROTECT(mMatrix_as_dgeMatrix(b)); |
SEXP b_M = PROTECT(mMatrix_as_dgeMatrix2(b, // transpose_if_vector = |
377 |
|
cha->ncol == 1)); |
378 |
CHM_DN chb = AS_CHM_DN(b_M); |
CHM_DN chb = AS_CHM_DN(b_M); |
379 |
CHM_DN chc = cholmod_l_allocate_dense(cha->nrow, chb->ncol, cha->nrow, |
CHM_DN chc = cholmod_allocate_dense(cha->nrow, chb->ncol, cha->nrow, |
380 |
chb->xtype, &c); |
chb->xtype, &c); |
381 |
SEXP dn = PROTECT(allocVector(VECSXP, 2)); |
SEXP dn = PROTECT(allocVector(VECSXP, 2)); |
382 |
double one[] = {1,0}, zero[] = {0,0}; |
double one[] = {1,0}, zero[] = {0,0}; |
383 |
|
int nprot = 2; |
384 |
R_CheckStack(); |
R_CheckStack(); |
385 |
|
/* Tim Davis, please FIXME: currently (2010-11) *fails* when a is a pattern matrix:*/ |
386 |
cholmod_l_sdmult(cha, 0, one, zero, chb, chc, &c); |
if(cha->xtype == CHOLMOD_PATTERN) { |
387 |
|
/* warning(_("Csparse_dense_prod(): cholmod_sdmult() not yet implemented for pattern./ ngCMatrix" */ |
388 |
|
/* " --> slightly inefficient coercion")); */ |
389 |
|
|
390 |
|
// This *fails* to produce a CHOLMOD_REAL .. |
391 |
|
// CHM_SP chd = cholmod_l_copy(cha, cha->stype, CHOLMOD_REAL, &c); |
392 |
|
// --> use our Matrix-classes |
393 |
|
SEXP da = PROTECT(nz2Csparse(a, x_double)); nprot++; |
394 |
|
cha = AS_CHM_SP(da); |
395 |
|
} |
396 |
|
cholmod_sdmult(cha, 0, one, zero, chb, chc, &c); |
397 |
SET_VECTOR_ELT(dn, 0, /* establish dimnames */ |
SET_VECTOR_ELT(dn, 0, /* establish dimnames */ |
398 |
duplicate(VECTOR_ELT(GET_SLOT(a, Matrix_DimNamesSym), 0))); |
duplicate(VECTOR_ELT(GET_SLOT(a, Matrix_DimNamesSym), 0))); |
399 |
SET_VECTOR_ELT(dn, 1, |
SET_VECTOR_ELT(dn, 1, |
400 |
duplicate(VECTOR_ELT(GET_SLOT(b_M, Matrix_DimNamesSym), 1))); |
duplicate(VECTOR_ELT(GET_SLOT(b_M, Matrix_DimNamesSym), 1))); |
401 |
UNPROTECT(2); |
UNPROTECT(nprot); |
402 |
return chm_dense_to_SEXP(chc, 1, 0, dn); |
return chm_dense_to_SEXP(chc, 1, 0, dn); |
403 |
} |
} |
404 |
|
|
405 |
SEXP Csparse_dense_crossprod(SEXP a, SEXP b) |
SEXP Csparse_dense_crossprod(SEXP a, SEXP b) |
406 |
{ |
{ |
407 |
CHM_SP cha = AS_CHM_SP(a); |
CHM_SP cha = AS_CHM_SP(a); |
408 |
SEXP b_M = PROTECT(mMatrix_as_dgeMatrix(b)); |
SEXP b_M = PROTECT(mMatrix_as_dgeMatrix2(b, // transpose_if_vector = |
409 |
|
cha->nrow == 1)); |
410 |
CHM_DN chb = AS_CHM_DN(b_M); |
CHM_DN chb = AS_CHM_DN(b_M); |
411 |
CHM_DN chc = cholmod_l_allocate_dense(cha->ncol, chb->ncol, cha->ncol, |
CHM_DN chc = cholmod_allocate_dense(cha->ncol, chb->ncol, cha->ncol, |
412 |
chb->xtype, &c); |
chb->xtype, &c); |
413 |
SEXP dn = PROTECT(allocVector(VECSXP, 2)); |
SEXP dn = PROTECT(allocVector(VECSXP, 2)); int nprot = 2; |
414 |
double one[] = {1,0}, zero[] = {0,0}; |
double one[] = {1,0}, zero[] = {0,0}; |
415 |
R_CheckStack(); |
R_CheckStack(); |
416 |
|
// -- see Csparse_dense_prod() above : |
417 |
cholmod_l_sdmult(cha, 1, one, zero, chb, chc, &c); |
if(cha->xtype == CHOLMOD_PATTERN) { |
418 |
|
SEXP da = PROTECT(nz2Csparse(a, x_double)); nprot++; |
419 |
|
cha = AS_CHM_SP(da); |
420 |
|
} |
421 |
|
cholmod_sdmult(cha, 1, one, zero, chb, chc, &c); |
422 |
SET_VECTOR_ELT(dn, 0, /* establish dimnames */ |
SET_VECTOR_ELT(dn, 0, /* establish dimnames */ |
423 |
duplicate(VECTOR_ELT(GET_SLOT(a, Matrix_DimNamesSym), 1))); |
duplicate(VECTOR_ELT(GET_SLOT(a, Matrix_DimNamesSym), 1))); |
424 |
SET_VECTOR_ELT(dn, 1, |
SET_VECTOR_ELT(dn, 1, |
425 |
duplicate(VECTOR_ELT(GET_SLOT(b_M, Matrix_DimNamesSym), 1))); |
duplicate(VECTOR_ELT(GET_SLOT(b_M, Matrix_DimNamesSym), 1))); |
426 |
UNPROTECT(2); |
UNPROTECT(nprot); |
427 |
return chm_dense_to_SEXP(chc, 1, 0, dn); |
return chm_dense_to_SEXP(chc, 1, 0, dn); |
428 |
} |
} |
429 |
|
|
441 |
#endif |
#endif |
442 |
CHM_SP chcp, chxt, |
CHM_SP chcp, chxt, |
443 |
chx = (trip ? |
chx = (trip ? |
444 |
cholmod_l_triplet_to_sparse(cht, cht->nnz, &c) : |
cholmod_triplet_to_sparse(cht, cht->nnz, &c) : |
445 |
AS_CHM_SP(x)); |
AS_CHM_SP(x)); |
446 |
SEXP dn = PROTECT(allocVector(VECSXP, 2)); |
SEXP dn = PROTECT(allocVector(VECSXP, 2)); |
447 |
R_CheckStack(); |
R_CheckStack(); |
448 |
|
|
449 |
if (!tr) chxt = cholmod_l_transpose(chx, chx->xtype, &c); |
if (!tr) chxt = cholmod_transpose(chx, chx->xtype, &c); |
450 |
chcp = cholmod_l_aat((!tr) ? chxt : chx, (int *) NULL, 0, chx->xtype, &c); |
chcp = cholmod_aat((!tr) ? chxt : chx, (int *) NULL, 0, chx->xtype, &c); |
451 |
if(!chcp) { |
if(!chcp) { |
452 |
UNPROTECT(1); |
UNPROTECT(1); |
453 |
error(_("Csparse_crossprod(): error return from cholmod_l_aat()")); |
error(_("Csparse_crossprod(): error return from cholmod_aat()")); |
454 |
} |
} |
455 |
cholmod_l_band_inplace(0, chcp->ncol, chcp->xtype, chcp, &c); |
cholmod_band_inplace(0, chcp->ncol, chcp->xtype, chcp, &c); |
456 |
chcp->stype = 1; |
chcp->stype = 1; |
457 |
if (trip) cholmod_l_free_sparse(&chx, &c); |
if (trip) cholmod_free_sparse(&chx, &c); |
458 |
if (!tr) cholmod_l_free_sparse(&chxt, &c); |
if (!tr) cholmod_free_sparse(&chxt, &c); |
459 |
SET_VECTOR_ELT(dn, 0, /* establish dimnames */ |
SET_VECTOR_ELT(dn, 0, /* establish dimnames */ |
460 |
duplicate(VECTOR_ELT(GET_SLOT(x, Matrix_DimNamesSym), |
duplicate(VECTOR_ELT(GET_SLOT(x, Matrix_DimNamesSym), |
461 |
(tr) ? 0 : 1))); |
(tr) ? 0 : 1))); |
468 |
return chm_sparse_to_SEXP(chcp, 1, 0, 0, "", dn); |
return chm_sparse_to_SEXP(chcp, 1, 0, 0, "", dn); |
469 |
} |
} |
470 |
|
|
471 |
|
/* Csparse_drop(x, tol): drop entries with absolute value < tol, i.e, |
472 |
|
* at least all "explicit" zeros */ |
473 |
SEXP Csparse_drop(SEXP x, SEXP tol) |
SEXP Csparse_drop(SEXP x, SEXP tol) |
474 |
{ |
{ |
475 |
const char *cl = class_P(x); |
const char *cl = class_P(x); |
476 |
/* dtCMatrix, etc; [1] = the second character =?= 't' for triangular */ |
/* dtCMatrix, etc; [1] = the second character =?= 't' for triangular */ |
477 |
int tr = (cl[1] == 't'); |
int tr = (cl[1] == 't'); |
478 |
CHM_SP chx = AS_CHM_SP__(x); |
CHM_SP chx = AS_CHM_SP__(x); |
479 |
CHM_SP ans = cholmod_l_copy(chx, chx->stype, chx->xtype, &c); |
CHM_SP ans = cholmod_copy(chx, chx->stype, chx->xtype, &c); |
480 |
double dtol = asReal(tol); |
double dtol = asReal(tol); |
481 |
int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0; |
int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0; |
482 |
R_CheckStack(); |
R_CheckStack(); |
483 |
|
|
484 |
if(!cholmod_l_drop(dtol, ans, &c)) |
if(!cholmod_drop(dtol, ans, &c)) |
485 |
error(_("cholmod_l_drop() failed")); |
error(_("cholmod_drop() failed")); |
486 |
return chm_sparse_to_SEXP(ans, 1, |
return chm_sparse_to_SEXP(ans, 1, |
487 |
tr ? ((*uplo_P(x) == 'U') ? 1 : -1) : 0, |
tr ? ((*uplo_P(x) == 'U') ? 1 : -1) : 0, |
488 |
Rkind, tr ? diag_P(x) : "", |
Rkind, tr ? diag_P(x) : "", |
498 |
R_CheckStack(); |
R_CheckStack(); |
499 |
|
|
500 |
/* TODO: currently drops dimnames - and we fix at R level */ |
/* TODO: currently drops dimnames - and we fix at R level */ |
501 |
return chm_sparse_to_SEXP(cholmod_l_horzcat(chx, chy, 1, &c), |
return chm_sparse_to_SEXP(cholmod_horzcat(chx, chy, 1, &c), |
502 |
1, 0, Rkind, "", R_NilValue); |
1, 0, Rkind, "", R_NilValue); |
503 |
} |
} |
504 |
|
|
511 |
R_CheckStack(); |
R_CheckStack(); |
512 |
|
|
513 |
/* TODO: currently drops dimnames - and we fix at R level */ |
/* TODO: currently drops dimnames - and we fix at R level */ |
514 |
return chm_sparse_to_SEXP(cholmod_l_vertcat(chx, chy, 1, &c), |
return chm_sparse_to_SEXP(cholmod_vertcat(chx, chy, 1, &c), |
515 |
1, 0, Rkind, "", R_NilValue); |
1, 0, Rkind, "", R_NilValue); |
516 |
} |
} |
517 |
|
|
519 |
{ |
{ |
520 |
CHM_SP chx = AS_CHM_SP__(x); |
CHM_SP chx = AS_CHM_SP__(x); |
521 |
int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0; |
int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0; |
522 |
CHM_SP ans = cholmod_l_band(chx, asInteger(k1), asInteger(k2), chx->xtype, &c); |
CHM_SP ans = cholmod_band(chx, asInteger(k1), asInteger(k2), chx->xtype, &c); |
523 |
R_CheckStack(); |
R_CheckStack(); |
524 |
|
|
525 |
return chm_sparse_to_SEXP(ans, 1, 0, Rkind, "", |
return chm_sparse_to_SEXP(ans, 1, 0, Rkind, "", |
537 |
} |
} |
538 |
else { /* unit triangular (diag='U'): "fill the diagonal" & diag:= "N" */ |
else { /* unit triangular (diag='U'): "fill the diagonal" & diag:= "N" */ |
539 |
CHM_SP chx = AS_CHM_SP__(x); |
CHM_SP chx = AS_CHM_SP__(x); |
540 |
CHM_SP eye = cholmod_l_speye(chx->nrow, chx->ncol, chx->xtype, &c); |
CHM_SP eye = cholmod_speye(chx->nrow, chx->ncol, chx->xtype, &c); |
541 |
double one[] = {1, 0}; |
double one[] = {1, 0}; |
542 |
CHM_SP ans = cholmod_l_add(chx, eye, one, one, TRUE, TRUE, &c); |
CHM_SP ans = cholmod_add(chx, eye, one, one, TRUE, TRUE, &c); |
543 |
int uploT = (*uplo_P(x) == 'U') ? 1 : -1; |
int uploT = (*uplo_P(x) == 'U') ? 1 : -1; |
544 |
int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0; |
int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0; |
545 |
|
|
546 |
R_CheckStack(); |
R_CheckStack(); |
547 |
cholmod_l_free_sparse(&eye, &c); |
cholmod_free_sparse(&eye, &c); |
548 |
return chm_sparse_to_SEXP(ans, 1, uploT, Rkind, "N", |
return chm_sparse_to_SEXP(ans, 1, uploT, Rkind, "N", |
549 |
GET_SLOT(x, Matrix_DimNamesSym)); |
GET_SLOT(x, Matrix_DimNamesSym)); |
550 |
} |
} |
561 |
} |
} |
562 |
else { /* triangular with diag='N'): now drop the diagonal */ |
else { /* triangular with diag='N'): now drop the diagonal */ |
563 |
/* duplicate, since chx will be modified: */ |
/* duplicate, since chx will be modified: */ |
564 |
CHM_SP chx = AS_CHM_SP__(duplicate(x)); |
SEXP xx = PROTECT(duplicate(x)); |
565 |
|
CHM_SP chx = AS_CHM_SP__(xx); |
566 |
int uploT = (*uplo_P(x) == 'U') ? 1 : -1, |
int uploT = (*uplo_P(x) == 'U') ? 1 : -1, |
567 |
Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0; |
Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0; |
568 |
R_CheckStack(); |
R_CheckStack(); |
569 |
|
|
570 |
chm_diagN2U(chx, uploT, /* do_realloc */ FALSE); |
chm_diagN2U(chx, uploT, /* do_realloc */ FALSE); |
571 |
|
|
572 |
return chm_sparse_to_SEXP(chx, /*dofree*/ 0/* or 1 ?? */, |
SEXP ans = chm_sparse_to_SEXP(chx, /*dofree*/ 0/* or 1 ?? */, |
573 |
uploT, Rkind, "U", |
uploT, Rkind, "U", |
574 |
GET_SLOT(x, Matrix_DimNamesSym)); |
GET_SLOT(x, Matrix_DimNamesSym)); |
575 |
|
UNPROTECT(1);// only now ! |
576 |
|
return ans; |
577 |
} |
} |
578 |
} |
} |
579 |
|
|
599 |
if (csize >= 0 && !isInteger(j)) |
if (csize >= 0 && !isInteger(j)) |
600 |
error(_("Index j must be NULL or integer")); |
error(_("Index j must be NULL or integer")); |
601 |
|
|
602 |
if (chx->stype) /* symmetricMatrix */ |
#define CHM_SUB(_M_, _i_, _j_) \ |
603 |
|
cholmod_submatrix(_M_, \ |
604 |
|
(rsize < 0) ? NULL : INTEGER(_i_), rsize, \ |
605 |
|
(csize < 0) ? NULL : INTEGER(_j_), csize, \ |
606 |
|
TRUE, TRUE, &c) |
607 |
|
CHM_SP ans; |
608 |
|
if (!chx->stype) {/* non-symmetric Matrix */ |
609 |
|
ans = CHM_SUB(chx, i, j); |
610 |
|
} |
611 |
|
else { |
612 |
/* for now, cholmod_submatrix() only accepts "generalMatrix" */ |
/* for now, cholmod_submatrix() only accepts "generalMatrix" */ |
613 |
chx = cholmod_l_copy(chx, /* stype: */ 0, chx->xtype, &c); |
CHM_SP tmp = cholmod_copy(chx, /* stype: */ 0, chx->xtype, &c); |
614 |
|
ans = CHM_SUB(tmp, i, j); |
615 |
|
cholmod_free_sparse(&tmp, &c); |
616 |
|
} |
617 |
|
|
618 |
return chm_sparse_to_SEXP(cholmod_l_submatrix(chx, |
// "FIXME": currently dropping dimnames, and adding them afterwards in R : |
619 |
(rsize < 0) ? NULL : INTEGER(i), rsize, |
/* // dimnames: */ |
620 |
(csize < 0) ? NULL : INTEGER(j), csize, |
/* SEXP x_dns = GET_SLOT(x, Matrix_DimNamesSym), */ |
621 |
TRUE, TRUE, &c), |
/* dn = PROTECT(allocVector(VECSXP, 2)); */ |
622 |
1, 0, Rkind, "", |
return chm_sparse_to_SEXP(ans, 1, 0, Rkind, "", /* dimnames: */ R_NilValue); |
|
/* FIXME: drops dimnames */ R_NilValue); |
|
623 |
} |
} |
624 |
|
|
625 |
|
#define _d_Csp_ |
626 |
|
#include "t_Csparse_subassign.c" |
627 |
|
|
628 |
|
#define _l_Csp_ |
629 |
|
#include "t_Csparse_subassign.c" |
630 |
|
|
631 |
|
#define _i_Csp_ |
632 |
|
#include "t_Csparse_subassign.c" |
633 |
|
|
634 |
|
#define _n_Csp_ |
635 |
|
#include "t_Csparse_subassign.c" |
636 |
|
|
637 |
|
#define _z_Csp_ |
638 |
|
#include "t_Csparse_subassign.c" |
639 |
|
|
640 |
|
|
641 |
|
|
642 |
SEXP Csparse_MatrixMarket(SEXP x, SEXP fname) |
SEXP Csparse_MatrixMarket(SEXP x, SEXP fname) |
643 |
{ |
{ |
644 |
FILE *f = fopen(CHAR(asChar(fname)), "w"); |
FILE *f = fopen(CHAR(asChar(fname)), "w"); |
646 |
if (!f) |
if (!f) |
647 |
error(_("failure to open file \"%s\" for writing"), |
error(_("failure to open file \"%s\" for writing"), |
648 |
CHAR(asChar(fname))); |
CHAR(asChar(fname))); |
649 |
if (!cholmod_l_write_sparse(f, AS_CHM_SP(x), |
if (!cholmod_write_sparse(f, AS_CHM_SP(x), |
650 |
(CHM_SP)NULL, (char*) NULL, &c)) |
(CHM_SP)NULL, (char*) NULL, &c)) |
651 |
error(_("cholmod_l_write_sparse returned error code")); |
error(_("cholmod_write_sparse returned error code")); |
652 |
fclose(f); |
fclose(f); |
653 |
return R_NilValue; |
return R_NilValue; |
654 |
} |
} |
666 |
* |
* |
667 |
* @return a SEXP, either a (double) number or a length n-vector of diagonal entries |
* @return a SEXP, either a (double) number or a length n-vector of diagonal entries |
668 |
*/ |
*/ |
669 |
SEXP diag_tC_ptr(int n, int *x_p, double *x_x, int *perm, SEXP resultKind) |
SEXP diag_tC_ptr(int n, int *x_p, double *x_x, Rboolean is_U, int *perm, |
670 |
/* ^^^^^^ FIXME[Generalize] to int / ... */ |
/* ^^^^^^ FIXME[Generalize] to int / ... */ |
671 |
|
SEXP resultKind) |
672 |
{ |
{ |
673 |
const char* res_ch = CHAR(STRING_ELT(resultKind,0)); |
const char* res_ch = CHAR(STRING_ELT(resultKind,0)); |
674 |
enum diag_kind { diag, diag_backpermuted, trace, prod, sum_log |
enum diag_kind { diag, diag_backpermuted, trace, prod, sum_log, min, max, range |
675 |
} res_kind = ((!strcmp(res_ch, "trace")) ? trace : |
} res_kind = ((!strcmp(res_ch, "trace")) ? trace : |
676 |
((!strcmp(res_ch, "sumLog")) ? sum_log : |
((!strcmp(res_ch, "sumLog")) ? sum_log : |
677 |
((!strcmp(res_ch, "prod")) ? prod : |
((!strcmp(res_ch, "prod")) ? prod : |
678 |
|
((!strcmp(res_ch, "min")) ? min : |
679 |
|
((!strcmp(res_ch, "max")) ? max : |
680 |
|
((!strcmp(res_ch, "range")) ? range : |
681 |
((!strcmp(res_ch, "diag")) ? diag : |
((!strcmp(res_ch, "diag")) ? diag : |
682 |
((!strcmp(res_ch, "diagBack")) ? diag_backpermuted : |
((!strcmp(res_ch, "diagBack")) ? diag_backpermuted : |
683 |
-1))))); |
-1)))))))); |
684 |
int i, n_x, i_from = 0; |
int i, n_x, i_from; |
685 |
SEXP ans = PROTECT(allocVector(REALSXP, |
SEXP ans = PROTECT(allocVector(REALSXP, |
686 |
/* ^^^^ FIXME[Generalize] */ |
/* ^^^^ FIXME[Generalize] */ |
687 |
(res_kind == diag || |
(res_kind == diag || |
688 |
res_kind == diag_backpermuted) ? n : 1)); |
res_kind == diag_backpermuted) ? n : |
689 |
|
(res_kind == range ? 2 : 1))); |
690 |
double *v = REAL(ans); |
double *v = REAL(ans); |
691 |
/* ^^^^^^ ^^^^ FIXME[Generalize] */ |
/* ^^^^^^ ^^^^ FIXME[Generalize] */ |
692 |
|
|
693 |
|
i_from = (is_U ? -1 : 0); |
694 |
|
|
695 |
#define for_DIAG(v_ASSIGN) \ |
#define for_DIAG(v_ASSIGN) \ |
696 |
for(i = 0; i < n; i++, i_from += n_x) { \ |
for(i = 0; i < n; i++) { \ |
697 |
/* looking at i-th column */ \ |
/* looking at i-th column */ \ |
698 |
n_x = x_p[i+1] - x_p[i];/* #{entries} in this column */ \ |
n_x = x_p[i+1] - x_p[i];/* #{entries} in this column */ \ |
699 |
|
if( is_U) i_from += n_x; \ |
700 |
v_ASSIGN; \ |
v_ASSIGN; \ |
701 |
|
if(!is_U) i_from += n_x; \ |
702 |
} |
} |
703 |
|
|
704 |
/* NOTA BENE: we assume -- uplo = "L" i.e. lower triangular matrix |
/* NOTA BENE: we assume -- uplo = "L" i.e. lower triangular matrix |
705 |
* for uplo = "U" (makes sense with a "dtCMatrix" !), |
* for uplo = "U" (makes sense with a "dtCMatrix" !), |
706 |
* should use x_x[i_from + (nx - 1)] instead of x_x[i_from], |
* should use x_x[i_from + (n_x - 1)] instead of x_x[i_from], |
707 |
* where nx = (x_p[i+1] - x_p[i]) |
* where n_x = (x_p[i+1] - x_p[i]) |
708 |
*/ |
*/ |
709 |
|
|
710 |
switch(res_kind) { |
switch(res_kind) { |
711 |
case trace: |
case trace: // = sum |
712 |
v[0] = 0.; |
v[0] = 0.; |
713 |
for_DIAG(v[0] += x_x[i_from]); |
for_DIAG(v[0] += x_x[i_from]); |
714 |
break; |
break; |
723 |
for_DIAG(v[0] *= x_x[i_from]); |
for_DIAG(v[0] *= x_x[i_from]); |
724 |
break; |
break; |
725 |
|
|
726 |
|
case min: |
727 |
|
v[0] = R_PosInf; |
728 |
|
for_DIAG(if(v[0] > x_x[i_from]) v[0] = x_x[i_from]); |
729 |
|
break; |
730 |
|
|
731 |
|
case max: |
732 |
|
v[0] = R_NegInf; |
733 |
|
for_DIAG(if(v[0] < x_x[i_from]) v[0] = x_x[i_from]); |
734 |
|
break; |
735 |
|
|
736 |
|
case range: |
737 |
|
v[0] = R_PosInf; |
738 |
|
v[1] = R_NegInf; |
739 |
|
for_DIAG(if(v[0] > x_x[i_from]) v[0] = x_x[i_from]; |
740 |
|
if(v[1] < x_x[i_from]) v[1] = x_x[i_from]); |
741 |
|
break; |
742 |
|
|
743 |
case diag: |
case diag: |
744 |
for_DIAG(v[i] = x_x[i_from]); |
for_DIAG(v[i] = x_x[i_from]); |
745 |
break; |
break; |
747 |
case diag_backpermuted: |
case diag_backpermuted: |
748 |
for_DIAG(v[i] = x_x[i_from]); |
for_DIAG(v[i] = x_x[i_from]); |
749 |
|
|
750 |
warning(_("resultKind = 'diagBack' (back-permuted) is experimental")); |
warning(_("%s = '%s' (back-permuted) is experimental"), |
751 |
|
"resultKind", "diagBack"); |
752 |
/* now back_permute : */ |
/* now back_permute : */ |
753 |
for(i = 0; i < n; i++) { |
for(i = 0; i < n; i++) { |
754 |
double tmp = v[i]; v[i] = v[perm[i]]; v[perm[i]] = tmp; |
double tmp = v[i]; v[i] = v[perm[i]]; v[perm[i]] = tmp; |
769 |
* Extract the diagonal entries from *triangular* Csparse matrix __or__ a |
* Extract the diagonal entries from *triangular* Csparse matrix __or__ a |
770 |
* cholmod_sparse factor (LDL = TRUE). |
* cholmod_sparse factor (LDL = TRUE). |
771 |
* |
* |
772 |
|
* @param obj -- now a cholmod_sparse factor or a dtCMatrix |
773 |
* @param pslot 'p' (column pointer) slot of Csparse matrix/factor |
* @param pslot 'p' (column pointer) slot of Csparse matrix/factor |
774 |
* @param xslot 'x' (non-zero entries) slot of Csparse matrix/factor |
* @param xslot 'x' (non-zero entries) slot of Csparse matrix/factor |
775 |
* @param perm_slot 'perm' (= permutation vector) slot of corresponding CHMfactor; |
* @param perm_slot 'perm' (= permutation vector) slot of corresponding CHMfactor; |
778 |
* |
* |
779 |
* @return a SEXP, either a (double) number or a length n-vector of diagonal entries |
* @return a SEXP, either a (double) number or a length n-vector of diagonal entries |
780 |
*/ |
*/ |
781 |
SEXP diag_tC(SEXP pslot, SEXP xslot, SEXP perm_slot, SEXP resultKind) |
SEXP diag_tC(SEXP obj, SEXP resultKind) |
782 |
{ |
{ |
783 |
|
|
784 |
|
SEXP |
785 |
|
pslot = GET_SLOT(obj, Matrix_pSym), |
786 |
|
xslot = GET_SLOT(obj, Matrix_xSym); |
787 |
|
Rboolean is_U = (R_has_slot(obj, Matrix_uploSym) && |
788 |
|
*CHAR(asChar(GET_SLOT(obj, Matrix_uploSym))) == 'U'); |
789 |
int n = length(pslot) - 1, /* n = ncol(.) = nrow(.) */ |
int n = length(pslot) - 1, /* n = ncol(.) = nrow(.) */ |
790 |
*x_p = INTEGER(pslot), |
*x_p = INTEGER(pslot), pp = -1, *perm; |
|
*perm = INTEGER(perm_slot); |
|
791 |
double *x_x = REAL(xslot); |
double *x_x = REAL(xslot); |
792 |
/* ^^^^^^ ^^^^ FIXME[Generalize] to INTEGER(.) / LOGICAL(.) / ... xslot !*/ |
/* ^^^^^^ ^^^^ FIXME[Generalize] to INTEGER(.) / LOGICAL(.) / ... xslot !*/ |
793 |
|
|
794 |
return diag_tC_ptr(n, x_p, x_x, perm, resultKind); |
if(R_has_slot(obj, Matrix_permSym)) |
795 |
|
perm = INTEGER(GET_SLOT(obj, Matrix_permSym)); |
796 |
|
else perm = &pp; |
797 |
|
|
798 |
|
return diag_tC_ptr(n, x_p, x_x, is_U, perm, resultKind); |
799 |
} |
} |
800 |
|
|
801 |
|
|
802 |
/** |
/** |
803 |
* Create a Csparse matrix object from indices and/or pointers. |
* Create a Csparse matrix object from indices and/or pointers. |
804 |
* |
* |
900 |
if (cls[1] != 'g') |
if (cls[1] != 'g') |
901 |
error(_("Only 'g'eneral sparse matrix types allowed")); |
error(_("Only 'g'eneral sparse matrix types allowed")); |
902 |
/* allocate and populate the triplet */ |
/* allocate and populate the triplet */ |
903 |
T = cholmod_l_allocate_triplet((size_t)nrow, (size_t)ncol, (size_t)nnz, 0, |
T = cholmod_allocate_triplet((size_t)nrow, (size_t)ncol, (size_t)nnz, 0, |
904 |
xtype, &c); |
xtype, &c); |
905 |
T->x = x; |
T->x = x; |
906 |
tri = (int*)T->i; |
tri = (int*)T->i; |
910 |
trj[ii] = j[ii] - ((!mj && index1) ? 1 : 0); |
trj[ii] = j[ii] - ((!mj && index1) ? 1 : 0); |
911 |
} |
} |
912 |
/* create the cholmod_sparse structure */ |
/* create the cholmod_sparse structure */ |
913 |
A = cholmod_l_triplet_to_sparse(T, nnz, &c); |
A = cholmod_triplet_to_sparse(T, nnz, &c); |
914 |
cholmod_l_free_triplet(&T, &c); |
cholmod_free_triplet(&T, &c); |
915 |
/* copy the information to the SEXP */ |
/* copy the information to the SEXP */ |
916 |
ans = PROTECT(NEW_OBJECT(MAKE_CLASS(cls))); |
ans = PROTECT(NEW_OBJECT(MAKE_CLASS(cls))); |
917 |
/* FIXME: This has been copied from chm_sparse_to_SEXP in chm_common.c */ |
/* FIXME: This has been copied from chm_sparse_to_SEXP in chm_common.c */ |
918 |
/* allocate and copy common slots */ |
/* allocate and copy common slots */ |
919 |
nnz = cholmod_l_nnz(A, &c); |
nnz = cholmod_nnz(A, &c); |
920 |
dims = INTEGER(ALLOC_SLOT(ans, Matrix_DimSym, INTSXP, 2)); |
dims = INTEGER(ALLOC_SLOT(ans, Matrix_DimSym, INTSXP, 2)); |
921 |
dims[0] = A->nrow; dims[1] = A->ncol; |
dims[0] = A->nrow; dims[1] = A->ncol; |
922 |
Memcpy(INTEGER(ALLOC_SLOT(ans, Matrix_pSym, INTSXP, A->ncol + 1)), (int*)A->p, A->ncol + 1); |
Memcpy(INTEGER(ALLOC_SLOT(ans, Matrix_pSym, INTSXP, A->ncol + 1)), (int*)A->p, A->ncol + 1); |
928 |
case 'l': |
case 'l': |
929 |
error(_("code not yet written for cls = \"lgCMatrix\"")); |
error(_("code not yet written for cls = \"lgCMatrix\"")); |
930 |
} |
} |
931 |
cholmod_l_free_sparse(&A, &c); |
/* FIXME: dimnames are *NOT* put there yet (if non-NULL) */ |
932 |
|
cholmod_free_sparse(&A, &c); |
933 |
UNPROTECT(1); |
UNPROTECT(1); |
934 |
return ans; |
return ans; |
935 |
} |
} |