SCM

SCM Repository

[matrix] Diff of /pkg/Matrix/src/Csparse.c
ViewVC logotype

Diff of /pkg/Matrix/src/Csparse.c

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 1029, Wed Nov 9 15:26:22 2005 UTC revision 2113, Mon Feb 18 08:27:41 2008 UTC
# Line 1  Line 1 
1                          /* Sparse matrices in compress column-oriented form */                          /* Sparse matrices in compressed column-oriented form */
2  #include "Csparse.h"  #include "Csparse.h"
 #ifdef USE_CHOLMOD  
3  #include "chm_common.h"  #include "chm_common.h"
 #endif  /* USE_CHOLMOD */  
4    
5  SEXP Csparse_validate(SEXP x)  SEXP Csparse_validate(SEXP x)
6  {  {
7        /* NB: we do *NOT* check a potential 'x' slot here, at all */
8      SEXP pslot = GET_SLOT(x, Matrix_pSym),      SEXP pslot = GET_SLOT(x, Matrix_pSym),
9          islot = GET_SLOT(x, Matrix_iSym);          islot = GET_SLOT(x, Matrix_iSym);
10      int j, ncol = length(pslot) - 1,      Rboolean sorted, strictly;
11        int j, k,
12          *dims = INTEGER(GET_SLOT(x, Matrix_DimSym)),          *dims = INTEGER(GET_SLOT(x, Matrix_DimSym)),
13          nrow, *xp = INTEGER(pslot),          nrow = dims[0],
14            ncol = dims[1],
15            *xp = INTEGER(pslot),
16          *xi = INTEGER(islot);          *xi = INTEGER(islot);
17    
18      nrow = dims[0];      if (length(pslot) != dims[1] + 1)
19      if (length(pslot) <= 0)          return mkString(_("slot p must have length = ncol(.) + 1"));
         return mkString(_("slot p must have length > 0"));  
20      if (xp[0] != 0)      if (xp[0] != 0)
21          return mkString(_("first element of slot p must be zero"));          return mkString(_("first element of slot p must be zero"));
22      if (length(islot) != xp[ncol])      if (length(islot) < xp[ncol]) /* allow larger slots from over-allocation!*/
23          return mkString(_("last element of slot p must match length of slots i and x"));          return
24                mkString(_("last element of slot p must match length of slots i and x"));
25        for (j = 0; j < length(islot); j++) {
26            if (xi[j] < 0 || xi[j] >= nrow)
27                return mkString(_("all row indices must be between 0 and nrow-1"));
28        }
29        sorted = TRUE; strictly = TRUE;
30      for (j = 0; j < ncol; j++) {      for (j = 0; j < ncol; j++) {
31          if (xp[j] > xp[j+1])          if (xp[j] > xp[j+1])
32              return mkString(_("slot p must be non-decreasing"));              return mkString(_("slot p must be non-decreasing"));
33            if(sorted)
34                for (k = xp[j] + 1; k < xp[j + 1]; k++) {
35                    if (xi[k] < xi[k - 1])
36                        sorted = FALSE;
37                    else if (xi[k] == xi[k - 1])
38                        strictly = FALSE;
39      }      }
40      for (j = 0; j < length(islot); j++) {      }
41          if (xi[j] < 0 || xi[j] >= nrow)      if (!sorted) {
42              return mkString(_("all row indices must be between 0 and nrow-1"));          CHM_SP chx = AS_CHM_SP(x);
43            R_CheckStack();
44    
45            cholmod_sort(chx, &c);
46            /* Now re-check that row indices are *strictly* increasing
47             * (and not just increasing) within each column : */
48            for (j = 0; j < ncol; j++) {
49                for (k = xp[j] + 1; k < xp[j + 1]; k++)
50                    if (xi[k] == xi[k - 1])
51                        return mkString(_("slot i is not *strictly* increasing inside a column (even after cholmod_sort)"));
52            }
53    
54        } else if(!strictly) {  /* sorted, but not strictly */
55            return mkString(_("slot i is not *strictly* increasing inside a column"));
56      }      }
57      return ScalarLogical(1);      return ScalarLogical(1);
58  }  }
59    
60  SEXP Csparse_to_Tsparse(SEXP x)  SEXP Rsparse_validate(SEXP x)
61    {
62        /* NB: we do *NOT* check a potential 'x' slot here, at all */
63        SEXP pslot = GET_SLOT(x, Matrix_pSym),
64            jslot = GET_SLOT(x, Matrix_jSym);
65        Rboolean sorted, strictly;
66        int i, k,
67            *dims = INTEGER(GET_SLOT(x, Matrix_DimSym)),
68            nrow = dims[0],
69            ncol = dims[1],
70            *xp = INTEGER(pslot),
71            *xj = INTEGER(jslot);
72    
73        if (length(pslot) != dims[0] + 1)
74            return mkString(_("slot p must have length = nrow(.) + 1"));
75        if (xp[0] != 0)
76            return mkString(_("first element of slot p must be zero"));
77        if (length(jslot) < xp[nrow]) /* allow larger slots from over-allocation!*/
78            return
79                mkString(_("last element of slot p must match length of slots j and x"));
80        for (i = 0; i < length(jslot); i++) {
81            if (xj[i] < 0 || xj[i] >= ncol)
82                return mkString(_("all column indices must be between 0 and ncol-1"));
83        }
84        sorted = TRUE; strictly = TRUE;
85        for (i = 0; i < nrow; i++) {
86            if (xp[i] > xp[i+1])
87                return mkString(_("slot p must be non-decreasing"));
88            if(sorted)
89                for (k = xp[i] + 1; k < xp[i + 1]; k++) {
90                    if (xj[k] < xj[k - 1])
91                        sorted = FALSE;
92                    else if (xj[k] == xj[k - 1])
93                        strictly = FALSE;
94                }
95        }
96        if (!sorted)
97            /* cannot easily use cholmod_sort(.) ... -> "error out" :*/
98            return mkString(_("slot j is not increasing inside a column"));
99        else if(!strictly) /* sorted, but not strictly */
100            return mkString(_("slot j is not *strictly* increasing inside a column"));
101    
102        return ScalarLogical(1);
103    }
104    
105    
106    /* Called from ../R/Csparse.R : */
107    /* Can only return [dln]geMatrix (no symm/triang);
108     * FIXME: replace by non-CHOLMOD code ! */
109    SEXP Csparse_to_dense(SEXP x)
110    {
111        CHM_SP chxs = AS_CHM_SP(x);
112        /* This loses the symmetry property, since cholmod_dense has none,
113         * BUT, much worse (FIXME!), it also transforms CHOLMOD_PATTERN ("n") matrices
114         * to numeric (CHOLMOD_REAL) ones : */
115        CHM_DN chxd = cholmod_sparse_to_dense(chxs, &c);
116        int Rkind = (chxs->xtype == CHOLMOD_PATTERN)? -1 : Real_kind(x);
117        R_CheckStack();
118    
119        return chm_dense_to_SEXP(chxd, 1, Rkind, GET_SLOT(x, Matrix_DimNamesSym));
120    }
121    
122    SEXP Csparse_to_nz_pattern(SEXP x, SEXP tri)
123    {
124        CHM_SP chxs = AS_CHM_SP(x);
125        CHM_SP chxcp = cholmod_copy(chxs, chxs->stype, CHOLMOD_PATTERN, &c);
126        int tr = asLogical(tri);
127        R_CheckStack();
128    
129        return chm_sparse_to_SEXP(chxcp, 1/*do_free*/,
130                                  tr ? ((*uplo_P(x) == 'U') ? 1 : -1) : 0,
131                                  0, tr ? diag_P(x) : "",
132                                  GET_SLOT(x, Matrix_DimNamesSym));
133    }
134    
135    SEXP Csparse_to_matrix(SEXP x)
136    {
137        return chm_dense_to_matrix(cholmod_sparse_to_dense(AS_CHM_SP(x), &c),
138                                   1 /*do_free*/, GET_SLOT(x, Matrix_DimNamesSym));
139    }
140    
141    SEXP Csparse_to_Tsparse(SEXP x, SEXP tri)
142    {
143        CHM_SP chxs = AS_CHM_SP(x);
144        CHM_TR chxt = cholmod_sparse_to_triplet(chxs, &c);
145        int tr = asLogical(tri);
146        int Rkind = (chxs->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0;
147        R_CheckStack();
148    
149        return chm_triplet_to_SEXP(chxt, 1,
150                                   tr ? ((*uplo_P(x) == 'U') ? 1 : -1) : 0,
151                                   Rkind, tr ? diag_P(x) : "",
152                                   GET_SLOT(x, Matrix_DimNamesSym));
153    }
154    
155    /* this used to be called  sCMatrix_to_gCMatrix(..)   [in ./dsCMatrix.c ]: */
156    SEXP Csparse_symmetric_to_general(SEXP x)
157    {
158        CHM_SP chx = AS_CHM_SP(x), chgx;
159        int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0;
160        R_CheckStack();
161    
162        if (!(chx->stype))
163            error(_("Nonsymmetric matrix in Csparse_symmetric_to_general"));
164        chgx = cholmod_copy(chx, /* stype: */ 0, chx->xtype, &c);
165        /* xtype: pattern, "real", complex or .. */
166        return chm_sparse_to_SEXP(chgx, 1, 0, Rkind, "",
167                                  GET_SLOT(x, Matrix_DimNamesSym));
168    }
169    
170    SEXP Csparse_general_to_symmetric(SEXP x, SEXP uplo)
171  {  {
172  #ifdef USE_CHOLMOD      CHM_SP chx = AS_CHM_SP(x), chgx;
173      cholmod_sparse *chxs = as_cholmod_sparse(x);      int uploT = (*CHAR(STRING_ELT(uplo,0)) == 'U') ? 1 : -1;
174      cholmod_triplet *chxt = cholmod_sparse_to_triplet(chxs, &c);      int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0;
175        R_CheckStack();
176      free(chxs);  
177      return chm_triplet_to_SEXP(chxt, 1);      chgx = cholmod_copy(chx, /* stype: */ uploT, chx->xtype, &c);
178  #else      /* xtype: pattern, "real", complex or .. */
179      error("General conversion requires CHOLMOD");      return chm_sparse_to_SEXP(chgx, 1, 0, Rkind, "",
180      return R_NilValue;          /* -Wall */                                GET_SLOT(x, Matrix_DimNamesSym));
 #endif  /* USE_CHOLMOD */  
 }  
   
 SEXP Csparse_transpose(SEXP x)  
 {  
 #ifdef USE_CHOLMOD  
     cholmod_sparse *chx = as_cholmod_sparse(x);  
     cholmod_sparse *chxt = cholmod_transpose(chx, (int) chx->xtype, &c);  
   
     free(chx);  
     return chm_sparse_to_SEXP(chxt, 1);  
 #else  
     error("General conversion requires CHOLMOD");  
     return R_NilValue;          /* -Wall */  
 #endif  /* USE_CHOLMOD */  
181  }  }
182    
183    SEXP Csparse_transpose(SEXP x, SEXP tri)
184    {
185        /* TODO: lgCMatrix & igC* currently go via double prec. cholmod -
186         *       since cholmod (& cs) lacks sparse 'int' matrices */
187        CHM_SP chx = AS_CHM_SP(x);
188        int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0;
189        CHM_SP chxt = cholmod_transpose(chx, chx->xtype, &c);
190        SEXP dn = PROTECT(duplicate(GET_SLOT(x, Matrix_DimNamesSym))), tmp;
191        int tr = asLogical(tri);
192        R_CheckStack();
193    
194        tmp = VECTOR_ELT(dn, 0);    /* swap the dimnames */
195        SET_VECTOR_ELT(dn, 0, VECTOR_ELT(dn, 1));
196        SET_VECTOR_ELT(dn, 1, tmp);
197        UNPROTECT(1);
198        return chm_sparse_to_SEXP(chxt, 1, /* SWAP 'uplo' for triangular */
199                                  tr ? ((*uplo_P(x) == 'U') ? -1 : 1) : 0,
200                                  Rkind, tr ? diag_P(x) : "", dn);
201    }
202    
203  SEXP Csparse_Csparse_prod(SEXP a, SEXP b)  SEXP Csparse_Csparse_prod(SEXP a, SEXP b)
204  {  {
205  #ifdef USE_CHOLMOD      CHM_SP cha = AS_CHM_SP(a), chb = AS_CHM_SP(b);
206      cholmod_sparse *cha = as_cholmod_sparse(a), *chb = as_cholmod_sparse(b);      CHM_SP chc = cholmod_ssmult(cha, chb, 0, cha->xtype, 1, &c);
207      cholmod_sparse *chc = cholmod_ssmult(cha, chb, 0, (int) cha->xtype, 1, &c);      SEXP dn = allocVector(VECSXP, 2);
208        R_CheckStack();
209      free(cha); free(chb);  
210      return chm_sparse_to_SEXP(chc, 1);      SET_VECTOR_ELT(dn, 0,       /* establish dimnames */
211  #else                     duplicate(VECTOR_ELT(GET_SLOT(a, Matrix_DimNamesSym), 0)));
212      error("General multiplication requires CHOLMOD");      SET_VECTOR_ELT(dn, 1,
213      return R_NilValue;          /* -Wall */                     duplicate(VECTOR_ELT(GET_SLOT(b, Matrix_DimNamesSym), 1)));
214  #endif  /* USE_CHOLMOD */      return chm_sparse_to_SEXP(chc, 1, 0, 0, "", dn);
215    }
216    
217    SEXP Csparse_Csparse_crossprod(SEXP a, SEXP b, SEXP trans)
218    {
219        int tr = asLogical(trans);
220        CHM_SP cha = AS_CHM_SP(a), chb = AS_CHM_SP(b), chTr, chc;
221        SEXP dn = allocVector(VECSXP, 2);
222        R_CheckStack();
223    
224        chTr = cholmod_transpose((tr) ? chb : cha, chb->xtype, &c);
225        chc = cholmod_ssmult((tr) ? cha : chTr, (tr) ? chTr : chb,
226                             0, cha->xtype, 1, &c);
227        cholmod_free_sparse(&chTr, &c);
228    
229        SET_VECTOR_ELT(dn, 0,       /* establish dimnames */
230                       duplicate(VECTOR_ELT(GET_SLOT(a, Matrix_DimNamesSym), (tr) ? 0 : 1)));
231        SET_VECTOR_ELT(dn, 1,
232                       duplicate(VECTOR_ELT(GET_SLOT(b, Matrix_DimNamesSym), (tr) ? 0 : 1)));
233        return chm_sparse_to_SEXP(chc, 1, 0, 0, "", dn);
234  }  }
235    
236  SEXP Csparse_dense_prod(SEXP a, SEXP b)  SEXP Csparse_dense_prod(SEXP a, SEXP b)
237  {  {
238  #ifdef USE_CHOLMOD      CHM_SP cha = AS_CHM_SP(a);
239      cholmod_sparse *cha = as_cholmod_sparse(a);      SEXP b_M = PROTECT(mMatrix_as_dgeMatrix(b));
240      cholmod_dense *chb = as_cholmod_dense(b);      CHM_DN chb = AS_CHM_DN(b_M);
241      cholmod_dense *chc = cholmod_allocate_dense(cha->nrow, chb->ncol,      CHM_DN chc = cholmod_allocate_dense(cha->nrow, chb->ncol, cha->nrow,
242                                                  cha->nrow, chb->xtype, &c);                                          chb->xtype, &c);
243      double alpha = 1, beta = 0;      SEXP dn = PROTECT(allocVector(VECSXP, 2));
244        double one[] = {1,0}, zero[] = {0,0};
245      cholmod_sdmult(cha, 0, &alpha, &beta, chb, chc, &c);      R_CheckStack();
246      free(cha); free(chb);  
247      return chm_dense_to_SEXP(chc, 1);      cholmod_sdmult(cha, 0, one, zero, chb, chc, &c);
248  #else      SET_VECTOR_ELT(dn, 0,       /* establish dimnames */
249      error("General multiplication requires CHOLMOD");                     duplicate(VECTOR_ELT(GET_SLOT(a, Matrix_DimNamesSym), 0)));
250      return R_NilValue;          /* -Wall */      SET_VECTOR_ELT(dn, 1,
251  #endif  /* USE_CHOLMOD */                     duplicate(VECTOR_ELT(GET_SLOT(b_M, Matrix_DimNamesSym), 1)));
252        UNPROTECT(2);
253        return chm_dense_to_SEXP(chc, 1, 0, dn);
254  }  }
255    
256    SEXP Csparse_dense_crossprod(SEXP a, SEXP b)
257    {
258        CHM_SP cha = AS_CHM_SP(a);
259        SEXP b_M = PROTECT(mMatrix_as_dgeMatrix(b));
260        CHM_DN chb = AS_CHM_DN(b_M);
261        CHM_DN chc = cholmod_allocate_dense(cha->ncol, chb->ncol, cha->ncol,
262                                            chb->xtype, &c);
263        SEXP dn = PROTECT(allocVector(VECSXP, 2));
264        double one[] = {1,0}, zero[] = {0,0};
265        R_CheckStack();
266    
267        cholmod_sdmult(cha, 1, one, zero, chb, chc, &c);
268        SET_VECTOR_ELT(dn, 0,       /* establish dimnames */
269                       duplicate(VECTOR_ELT(GET_SLOT(a, Matrix_DimNamesSym), 1)));
270        SET_VECTOR_ELT(dn, 1,
271                       duplicate(VECTOR_ELT(GET_SLOT(b_M, Matrix_DimNamesSym), 1)));
272        UNPROTECT(2);
273        return chm_dense_to_SEXP(chc, 1, 0, dn);
274    }
275    
276    /* Computes   x'x  or  x x'  -- see Csparse_Csparse_crossprod above for  x'y and x y' */
277  SEXP Csparse_crossprod(SEXP x, SEXP trans, SEXP triplet)  SEXP Csparse_crossprod(SEXP x, SEXP trans, SEXP triplet)
278  {  {
 #ifdef USE_CHOLMOD  
279      int trip = asLogical(triplet),      int trip = asLogical(triplet),
280          tr   = asLogical(trans); /* gets reversed because _aat is tcrossprod */          tr   = asLogical(trans); /* gets reversed because _aat is tcrossprod */
281      cholmod_triplet      CHM_TR cht = trip ? AS_CHM_TR(x) : (CHM_TR) NULL;
282          *cht = trip ? as_cholmod_triplet(x) : (cholmod_triplet*) NULL;      CHM_SP chcp, chxt,
283      cholmod_sparse *chcp, *chxt,          chx = trip ? cholmod_triplet_to_sparse(cht, cht->nnz, &c) : AS_CHM_SP(x);
284          *chx = trip ? cholmod_triplet_to_sparse(cht, cht->nnz, &c)      SEXP dn = PROTECT(allocVector(VECSXP, 2));
285          : as_cholmod_sparse(x);      R_CheckStack();
286    
287      if (!tr)      if (!tr) chxt = cholmod_transpose(chx, chx->xtype, &c);
         chxt = cholmod_transpose(chx, (int) chx->xtype, &c);  
288      chcp = cholmod_aat((!tr) ? chxt : chx, (int *) NULL, 0, chx->xtype, &c);      chcp = cholmod_aat((!tr) ? chxt : chx, (int *) NULL, 0, chx->xtype, &c);
289      if(!chcp)      if(!chcp) error(_("Csparse_crossprod(): error return from cholmod_aat()"));
290          error("Csparse_crossprod(): error return from cholmod_aat()");      cholmod_band_inplace(0, chcp->ncol, chcp->xtype, chcp, &c);
291        chcp->stype = 1;
292        if (trip) cholmod_free_sparse(&chx, &c);
293        if (!tr) cholmod_free_sparse(&chxt, &c);
294        SET_VECTOR_ELT(dn, 0,       /* establish dimnames */
295                       duplicate(VECTOR_ELT(GET_SLOT(x, Matrix_DimNamesSym),
296                                            (tr) ? 0 : 1)));
297        SET_VECTOR_ELT(dn, 1, duplicate(VECTOR_ELT(dn, 0)));
298        UNPROTECT(1);
299        return chm_sparse_to_SEXP(chcp, 1, 0, 0, "", dn);
300    }
301    
302      if (trip) {  SEXP Csparse_drop(SEXP x, SEXP tol)
303          cholmod_free_sparse(&chx, &c);  {
304          free(cht);      CHM_SP chx = AS_CHM_SP(x);
305      } else {      CHM_SP ans = cholmod_copy(chx, chx->stype, chx->xtype, &c);
306          free(chx);      double dtol = asReal(tol);
307        int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0;
308        R_CheckStack();
309    
310        if(!cholmod_drop(dtol, ans, &c))
311            error(_("cholmod_drop() failed"));
312        return chm_sparse_to_SEXP(ans, 1, 0, Rkind, "",
313                                  GET_SLOT(x, Matrix_DimNamesSym));
314      }      }
315      if (!tr) cholmod_free_sparse(&chxt, &c);  
316      return chm_sparse_to_SEXP(chcp, 1);  SEXP Csparse_horzcat(SEXP x, SEXP y)
317  #else  {
318      error("General crossproduct requires CHOLMOD");      CHM_SP chx = AS_CHM_SP(x), chy = AS_CHM_SP(y);
319      return R_NilValue;          /* -Wall */      int Rkind = 0; /* only for "d" - FIXME */
320  #endif  /* USE_CHOLMOD */      R_CheckStack();
321    
322        /* FIXME: currently drops dimnames */
323        return chm_sparse_to_SEXP(cholmod_horzcat(chx, chy, 1, &c),
324                                  1, 0, Rkind, "", R_NilValue);
325  }  }
326    
327    SEXP Csparse_vertcat(SEXP x, SEXP y)
328    {
329        CHM_SP chx = AS_CHM_SP(x), chy = AS_CHM_SP(y);
330        int Rkind = 0; /* only for "d" - FIXME */
331        R_CheckStack();
332    
333        /* FIXME: currently drops dimnames */
334        return chm_sparse_to_SEXP(cholmod_vertcat(chx, chy, 1, &c),
335                                  1, 0, Rkind, "", R_NilValue);
336    }
337    
338    SEXP Csparse_band(SEXP x, SEXP k1, SEXP k2)
339    {
340        CHM_SP chx = AS_CHM_SP(x);
341        int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0;
342        CHM_SP ans = cholmod_band(chx, asInteger(k1), asInteger(k2), chx->xtype, &c);
343        R_CheckStack();
344    
345        return chm_sparse_to_SEXP(ans, 1, 0, Rkind, "",
346                                  GET_SLOT(x, Matrix_DimNamesSym));
347    }
348    
349    SEXP Csparse_diagU2N(SEXP x)
350    {
351        if (*diag_P(x) != 'U') {/* "trivially fast" when there's no 'diag' slot at all */
352            return (x);
353        }
354        else {
355            CHM_SP chx = AS_CHM_SP(x);
356            CHM_SP eye = cholmod_speye(chx->nrow, chx->ncol, chx->xtype, &c);
357            double one[] = {1, 0};
358            CHM_SP ans = cholmod_add(chx, eye, one, one, TRUE, TRUE, &c);
359            int uploT = (*uplo_P(x) == 'U') ? 1 : -1;
360            int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0;
361    
362            R_CheckStack();
363            cholmod_free_sparse(&eye, &c);
364            return chm_sparse_to_SEXP(ans, 1, uploT, Rkind, "N",
365                                      GET_SLOT(x, Matrix_DimNamesSym));
366        }
367    }
368    
369    SEXP Csparse_submatrix(SEXP x, SEXP i, SEXP j)
370    {
371        CHM_SP chx = AS_CHM_SP(x);
372        int rsize = (isNull(i)) ? -1 : LENGTH(i),
373            csize = (isNull(j)) ? -1 : LENGTH(j);
374        int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0;
375        R_CheckStack();
376    
377        if (rsize >= 0 && !isInteger(i))
378            error(_("Index i must be NULL or integer"));
379        if (csize >= 0 && !isInteger(j))
380            error(_("Index j must be NULL or integer"));
381    
382        return chm_sparse_to_SEXP(cholmod_submatrix(chx, INTEGER(i), rsize,
383                                                    INTEGER(j), csize,
384                                                    TRUE, TRUE, &c),
385                                  1, 0, Rkind, "",
386                                  /* FIXME: drops dimnames */ R_NilValue);
387    }
388    
389    SEXP Csparse_MatrixMarket(SEXP x, SEXP fname)
390    {
391        FILE *f = fopen(CHAR(asChar(fname)), "w");
392    
393        if (!f)
394            error(_("failure to open file \"%s\" for writing"),
395                  CHAR(asChar(fname)));
396        if (!cholmod_write_sparse(f, AS_CHM_SP(x), (CHM_SP)NULL,
397                                  (char*) NULL, &c))
398            error(_("cholmod_write_sparse returned error code"));
399        fclose(f);
400        return R_NilValue;
401    }

Legend:
Removed from v.1029  
changed lines
  Added in v.2113

R-Forge@R-project.org
ViewVC Help
Powered by ViewVC 1.0.0  
Thanks to:
Vienna University of Economics and Business University of Wisconsin - Madison Powered By FusionForge