SCM

SCM Repository

[matrix] Diff of /pkg/Matrix/src/Csparse.c
ViewVC logotype

Diff of /pkg/Matrix/src/Csparse.c

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 928, Mon Sep 19 21:10:59 2005 UTC revision 2120, Tue Mar 4 21:44:41 2008 UTC
# Line 1  Line 1 
1                          /* Sparse matrices in compress column-oriented form */                          /* Sparse matrices in compressed column-oriented form */
2  #include "Csparse.h"  #include "Csparse.h"
3  #ifdef USE_CHOLMOD  #include "Tsparse.h"
4  #include "chm_common.h"  #include "chm_common.h"
 #endif  /* USE_CHOLMOD */  
5    
6  SEXP Csparse_validate(SEXP x)  SEXP Csparse_validate(SEXP x)
7  {  {
8        /* NB: we do *NOT* check a potential 'x' slot here, at all */
9      SEXP pslot = GET_SLOT(x, Matrix_pSym),      SEXP pslot = GET_SLOT(x, Matrix_pSym),
10          islot = GET_SLOT(x, Matrix_iSym);          islot = GET_SLOT(x, Matrix_iSym);
11      int j, ncol = length(pslot) - 1,      Rboolean sorted, strictly;
12        int j, k,
13          *dims = INTEGER(GET_SLOT(x, Matrix_DimSym)),          *dims = INTEGER(GET_SLOT(x, Matrix_DimSym)),
14          nrow, *xp = INTEGER(pslot),          nrow = dims[0],
15            ncol = dims[1],
16            *xp = INTEGER(pslot),
17          *xi = INTEGER(islot);          *xi = INTEGER(islot);
18    
19      nrow = dims[0];      if (length(pslot) != dims[1] + 1)
20      if (length(pslot) <= 0)          return mkString(_("slot p must have length = ncol(.) + 1"));
         return mkString(_("slot p must have length > 0"));  
21      if (xp[0] != 0)      if (xp[0] != 0)
22          return mkString(_("first element of slot p must be zero"));          return mkString(_("first element of slot p must be zero"));
23      if (length(islot) != xp[ncol])      if (length(islot) < xp[ncol]) /* allow larger slots from over-allocation!*/
24          return mkString(_("last element of slot p must match length of slots i and x"));          return
25                mkString(_("last element of slot p must match length of slots i and x"));
26        for (j = 0; j < length(islot); j++) {
27            if (xi[j] < 0 || xi[j] >= nrow)
28                return mkString(_("all row indices must be between 0 and nrow-1"));
29        }
30        sorted = TRUE; strictly = TRUE;
31      for (j = 0; j < ncol; j++) {      for (j = 0; j < ncol; j++) {
32          if (xp[j] > xp[j+1])          if (xp[j] > xp[j+1])
33              return mkString(_("slot p must be non-decreasing"));              return mkString(_("slot p must be non-decreasing"));
34            if(sorted)
35                for (k = xp[j] + 1; k < xp[j + 1]; k++) {
36                    if (xi[k] < xi[k - 1])
37                        sorted = FALSE;
38                    else if (xi[k] == xi[k - 1])
39                        strictly = FALSE;
40                }
41        }
42        if (!sorted) {
43            CHM_SP chx = AS_CHM_SP(x);
44            R_CheckStack();
45    
46            cholmod_sort(chx, &c);
47            /* Now re-check that row indices are *strictly* increasing
48             * (and not just increasing) within each column : */
49            for (j = 0; j < ncol; j++) {
50                for (k = xp[j] + 1; k < xp[j + 1]; k++)
51                    if (xi[k] == xi[k - 1])
52                        return mkString(_("slot i is not *strictly* increasing inside a column (even after cholmod_sort)"));
53            }
54    
55        } else if(!strictly) {  /* sorted, but not strictly */
56            return mkString(_("slot i is not *strictly* increasing inside a column"));
57        }
58        return ScalarLogical(1);
59    }
60    
61    SEXP Rsparse_validate(SEXP x)
62    {
63        /* NB: we do *NOT* check a potential 'x' slot here, at all */
64        SEXP pslot = GET_SLOT(x, Matrix_pSym),
65            jslot = GET_SLOT(x, Matrix_jSym);
66        Rboolean sorted, strictly;
67        int i, k,
68            *dims = INTEGER(GET_SLOT(x, Matrix_DimSym)),
69            nrow = dims[0],
70            ncol = dims[1],
71            *xp = INTEGER(pslot),
72            *xj = INTEGER(jslot);
73    
74        if (length(pslot) != dims[0] + 1)
75            return mkString(_("slot p must have length = nrow(.) + 1"));
76        if (xp[0] != 0)
77            return mkString(_("first element of slot p must be zero"));
78        if (length(jslot) < xp[nrow]) /* allow larger slots from over-allocation!*/
79            return
80                mkString(_("last element of slot p must match length of slots j and x"));
81        for (i = 0; i < length(jslot); i++) {
82            if (xj[i] < 0 || xj[i] >= ncol)
83                return mkString(_("all column indices must be between 0 and ncol-1"));
84        }
85        sorted = TRUE; strictly = TRUE;
86        for (i = 0; i < nrow; i++) {
87            if (xp[i] > xp[i+1])
88                return mkString(_("slot p must be non-decreasing"));
89            if(sorted)
90                for (k = xp[i] + 1; k < xp[i + 1]; k++) {
91                    if (xj[k] < xj[k - 1])
92                        sorted = FALSE;
93                    else if (xj[k] == xj[k - 1])
94                        strictly = FALSE;
95      }      }
     for (j = 0; j < length(islot); j++) {  
         if (xi[j] < 0 || xi[j] >= nrow)  
             return mkString(_("all row indices must be between 0 and nrow-1"));  
96      }      }
97        if (!sorted)
98            /* cannot easily use cholmod_sort(.) ... -> "error out" :*/
99            return mkString(_("slot j is not increasing inside a column"));
100        else if(!strictly) /* sorted, but not strictly */
101            return mkString(_("slot j is not *strictly* increasing inside a column"));
102    
103      return ScalarLogical(1);      return ScalarLogical(1);
104  }  }
105    
106  SEXP Csparse_to_Tsparse(SEXP x)  
107    /* Called from ../R/Csparse.R : */
108    /* Can only return [dln]geMatrix (no symm/triang);
109     * FIXME: replace by non-CHOLMOD code ! */
110    SEXP Csparse_to_dense(SEXP x)
111    {
112        CHM_SP chxs = AS_CHM_SP(x);
113        /* This loses the symmetry property, since cholmod_dense has none,
114         * BUT, much worse (FIXME!), it also transforms CHOLMOD_PATTERN ("n") matrices
115         * to numeric (CHOLMOD_REAL) ones : */
116        CHM_DN chxd = cholmod_sparse_to_dense(chxs, &c);
117        int Rkind = (chxs->xtype == CHOLMOD_PATTERN)? -1 : Real_kind(x);
118        R_CheckStack();
119    
120        return chm_dense_to_SEXP(chxd, 1, Rkind, GET_SLOT(x, Matrix_DimNamesSym));
121    }
122    
123    SEXP Csparse_to_nz_pattern(SEXP x, SEXP tri)
124    {
125        CHM_SP chxs = AS_CHM_SP(x);
126        CHM_SP chxcp = cholmod_copy(chxs, chxs->stype, CHOLMOD_PATTERN, &c);
127        int tr = asLogical(tri);
128        R_CheckStack();
129    
130        return chm_sparse_to_SEXP(chxcp, 1/*do_free*/,
131                                  tr ? ((*uplo_P(x) == 'U') ? 1 : -1) : 0,
132                                  0, tr ? diag_P(x) : "",
133                                  GET_SLOT(x, Matrix_DimNamesSym));
134    }
135    
136    SEXP Csparse_to_matrix(SEXP x)
137    {
138        return chm_dense_to_matrix(cholmod_sparse_to_dense(AS_CHM_SP(x), &c),
139                                   1 /*do_free*/, GET_SLOT(x, Matrix_DimNamesSym));
140    }
141    
142    SEXP Csparse_to_Tsparse(SEXP x, SEXP tri)
143    {
144        CHM_SP chxs = AS_CHM_SP(x);
145        CHM_TR chxt = cholmod_sparse_to_triplet(chxs, &c);
146        int tr = asLogical(tri);
147        int Rkind = (chxs->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0;
148        R_CheckStack();
149    
150        return chm_triplet_to_SEXP(chxt, 1,
151                                   tr ? ((*uplo_P(x) == 'U') ? 1 : -1) : 0,
152                                   Rkind, tr ? diag_P(x) : "",
153                                   GET_SLOT(x, Matrix_DimNamesSym));
154    }
155    
156    /* this used to be called  sCMatrix_to_gCMatrix(..)   [in ./dsCMatrix.c ]: */
157    SEXP Csparse_symmetric_to_general(SEXP x)
158  {  {
159  #ifdef USE_CHOLMOD      CHM_SP chx = AS_CHM_SP(x), chgx;
160      cholmod_sparse *chxs = as_cholmod_sparse(x);      int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0;
161      cholmod_triplet *chxt = cholmod_sparse_to_triplet(chxs, &c);      R_CheckStack();
162    
163      Free(chxs);      if (!(chx->stype))
164      return chm_triplet_to_SEXP(chxt, 1);          error(_("Nonsymmetric matrix in Csparse_symmetric_to_general"));
165  #else      chgx = cholmod_copy(chx, /* stype: */ 0, chx->xtype, &c);
166      error("General conversion requires CHOLMOD");      /* xtype: pattern, "real", complex or .. */
167      return R_NilValue;          /* -Wall */      return chm_sparse_to_SEXP(chgx, 1, 0, Rkind, "",
168  #endif  /* USE_CHOLMOD */                                GET_SLOT(x, Matrix_DimNamesSym));
 }  
   
 SEXP Csparse_transpose(SEXP x)  
 {  
 #ifdef USE_CHOLMOD  
     cholmod_sparse *chx = as_cholmod_sparse(x);  
     cholmod_sparse *chxt = cholmod_transpose(chx, (int) chx->xtype, &c);  
   
     Free(chx);  
     return chm_sparse_to_SEXP(chxt, 1);  
 #else  
     error("General conversion requires CHOLMOD");  
     return R_NilValue;          /* -Wall */  
 #endif  /* USE_CHOLMOD */  
169  }  }
170    
171    SEXP Csparse_general_to_symmetric(SEXP x, SEXP uplo)
172    {
173        CHM_SP chx = AS_CHM_SP(x), chgx;
174        int uploT = (*CHAR(STRING_ELT(uplo,0)) == 'U') ? 1 : -1;
175        int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0;
176        R_CheckStack();
177    
178        chgx = cholmod_copy(chx, /* stype: */ uploT, chx->xtype, &c);
179        /* xtype: pattern, "real", complex or .. */
180        return chm_sparse_to_SEXP(chgx, 1, 0, Rkind, "",
181                                  GET_SLOT(x, Matrix_DimNamesSym));
182    }
183    
184    SEXP Csparse_transpose(SEXP x, SEXP tri)
185    {
186        /* TODO: lgCMatrix & igC* currently go via double prec. cholmod -
187         *       since cholmod (& cs) lacks sparse 'int' matrices */
188        CHM_SP chx = AS_CHM_SP(x);
189        int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0;
190        CHM_SP chxt = cholmod_transpose(chx, chx->xtype, &c);
191        SEXP dn = PROTECT(duplicate(GET_SLOT(x, Matrix_DimNamesSym))), tmp;
192        int tr = asLogical(tri);
193        R_CheckStack();
194    
195        tmp = VECTOR_ELT(dn, 0);    /* swap the dimnames */
196        SET_VECTOR_ELT(dn, 0, VECTOR_ELT(dn, 1));
197        SET_VECTOR_ELT(dn, 1, tmp);
198        UNPROTECT(1);
199        return chm_sparse_to_SEXP(chxt, 1, /* SWAP 'uplo' for triangular */
200                                  tr ? ((*uplo_P(x) == 'U') ? -1 : 1) : 0,
201                                  Rkind, tr ? diag_P(x) : "", dn);
202    }
203    
204  SEXP Csparse_Csparse_prod(SEXP a, SEXP b)  SEXP Csparse_Csparse_prod(SEXP a, SEXP b)
205  {  {
206  #ifdef USE_CHOLMOD      CHM_SP
207      cholmod_sparse *cha = as_cholmod_sparse(a), *chb = as_cholmod_sparse(b);          cha = AS_CHM_SP(Csparse_diagU2N(a)),
208      cholmod_sparse *chc = cholmod_ssmult(cha, chb, 0, (int) cha->xtype, 1, &c);          chb = AS_CHM_SP(Csparse_diagU2N(b)),
209            chc = cholmod_ssmult(cha, chb, 0, cha->xtype, 1, &c);
210      Free(cha); Free(chb);      SEXP dn = allocVector(VECSXP, 2);
211      return chm_sparse_to_SEXP(chc, 1);      R_CheckStack();
212  #else  
213      error("General multiplication requires CHOLMOD");      SET_VECTOR_ELT(dn, 0,       /* establish dimnames */
214      return R_NilValue;          /* -Wall */                     duplicate(VECTOR_ELT(GET_SLOT(a, Matrix_DimNamesSym), 0)));
215  #endif  /* USE_CHOLMOD */      SET_VECTOR_ELT(dn, 1,
216                       duplicate(VECTOR_ELT(GET_SLOT(b, Matrix_DimNamesSym), 1)));
217        return chm_sparse_to_SEXP(chc, 1, 0, 0, "", dn);
218    }
219    
220    SEXP Csparse_Csparse_crossprod(SEXP a, SEXP b, SEXP trans)
221    {
222        int tr = asLogical(trans);
223        CHM_SP
224            cha = AS_CHM_SP(Csparse_diagU2N(a)),
225            chb = AS_CHM_SP(Csparse_diagU2N(b)),
226            chTr, chc;
227        SEXP dn = allocVector(VECSXP, 2);
228        R_CheckStack();
229    
230        chTr = cholmod_transpose((tr) ? chb : cha, chb->xtype, &c);
231        chc = cholmod_ssmult((tr) ? cha : chTr, (tr) ? chTr : chb,
232                             0, cha->xtype, 1, &c);
233        cholmod_free_sparse(&chTr, &c);
234    
235        SET_VECTOR_ELT(dn, 0,       /* establish dimnames */
236                       duplicate(VECTOR_ELT(GET_SLOT(a, Matrix_DimNamesSym), (tr) ? 0 : 1)));
237        SET_VECTOR_ELT(dn, 1,
238                       duplicate(VECTOR_ELT(GET_SLOT(b, Matrix_DimNamesSym), (tr) ? 0 : 1)));
239        return chm_sparse_to_SEXP(chc, 1, 0, 0, "", dn);
240  }  }
241    
242  SEXP Csparse_dense_prod(SEXP a, SEXP b)  SEXP Csparse_dense_prod(SEXP a, SEXP b)
243  {  {
244  #ifdef USE_CHOLMOD      CHM_SP cha = AS_CHM_SP(Csparse_diagU2N(a));
245      cholmod_sparse *cha = as_cholmod_sparse(a);      SEXP b_M = PROTECT(mMatrix_as_dgeMatrix(b));
246      cholmod_dense *chb = as_cholmod_dense(b);      CHM_DN chb = AS_CHM_DN(b_M);
247      cholmod_dense *chc = cholmod_allocate_dense(cha->nrow, chb->ncol,      CHM_DN chc = cholmod_allocate_dense(cha->nrow, chb->ncol, cha->nrow,
248                                                  cha->nrow, chb->xtype, &c);                                          chb->xtype, &c);
249      double alpha = 1, beta = 0;      SEXP dn = PROTECT(allocVector(VECSXP, 2));
250        double one[] = {1,0}, zero[] = {0,0};
251      cholmod_sdmult(cha, 0, &alpha, &beta, chb, chc, &c);      R_CheckStack();
252      Free(cha); Free(chb);  
253      return chm_dense_to_SEXP(chc, 1);      cholmod_sdmult(cha, 0, one, zero, chb, chc, &c);
254  #else      SET_VECTOR_ELT(dn, 0,       /* establish dimnames */
255      error("General multiplication requires CHOLMOD");                     duplicate(VECTOR_ELT(GET_SLOT(a, Matrix_DimNamesSym), 0)));
256      return R_NilValue;          /* -Wall */      SET_VECTOR_ELT(dn, 1,
257  #endif  /* USE_CHOLMOD */                     duplicate(VECTOR_ELT(GET_SLOT(b_M, Matrix_DimNamesSym), 1)));
258        UNPROTECT(2);
259        return chm_dense_to_SEXP(chc, 1, 0, dn);
260  }  }
261    
262    SEXP Csparse_dense_crossprod(SEXP a, SEXP b)
263    {
264        CHM_SP cha = AS_CHM_SP(Csparse_diagU2N(a));
265        SEXP b_M = PROTECT(mMatrix_as_dgeMatrix(b));
266        CHM_DN chb = AS_CHM_DN(b_M);
267        CHM_DN chc = cholmod_allocate_dense(cha->ncol, chb->ncol, cha->ncol,
268                                            chb->xtype, &c);
269        SEXP dn = PROTECT(allocVector(VECSXP, 2));
270        double one[] = {1,0}, zero[] = {0,0};
271        R_CheckStack();
272    
273        cholmod_sdmult(cha, 1, one, zero, chb, chc, &c);
274        SET_VECTOR_ELT(dn, 0,       /* establish dimnames */
275                       duplicate(VECTOR_ELT(GET_SLOT(a, Matrix_DimNamesSym), 1)));
276        SET_VECTOR_ELT(dn, 1,
277                       duplicate(VECTOR_ELT(GET_SLOT(b_M, Matrix_DimNamesSym), 1)));
278        UNPROTECT(2);
279        return chm_dense_to_SEXP(chc, 1, 0, dn);
280    }
281    
282    /* Computes   x'x  or  x x'  -- see Csparse_Csparse_crossprod above for  x'y and x y' */
283  SEXP Csparse_crossprod(SEXP x, SEXP trans, SEXP triplet)  SEXP Csparse_crossprod(SEXP x, SEXP trans, SEXP triplet)
284  {  {
285  #ifdef USE_CHOLMOD      int trip = asLogical(triplet),
286      int trip = asLogical(triplet);          tr   = asLogical(trans); /* gets reversed because _aat is tcrossprod */
287      cholmod_triplet      CHM_TR cht = trip ? AS_CHM_TR(Tsparse_diagU2N(x)) : (CHM_TR) NULL;
288          *cht = trip ? as_cholmod_triplet(x) : (cholmod_triplet*) NULL;      CHM_SP chcp, chxt,
289      cholmod_sparse *chcp, *chxt,          chx = (trip ?
290          *chx = trip ? cholmod_triplet_to_sparse(cht, cht->nnz, &c)                 cholmod_triplet_to_sparse(cht, cht->nnz, &c) :
291          : as_cholmod_sparse(x);                 AS_CHM_SP(Csparse_diagU2N(x)));
292      int tr = asLogical(trans);  /* gets reversed because _aat is tcrossprod */      SEXP dn = PROTECT(allocVector(VECSXP, 2));
293        R_CheckStack();
294    
295      if (!tr)      if (!tr) chxt = cholmod_transpose(chx, chx->xtype, &c);
         chxt = cholmod_transpose(chx, (int) chx->xtype, &c);  
296      chcp = cholmod_aat((!tr) ? chxt : chx, (int *) NULL, 0, chx->xtype, &c);      chcp = cholmod_aat((!tr) ? chxt : chx, (int *) NULL, 0, chx->xtype, &c);
297        if(!chcp) {
298      Free(trip ? cht : chx);          UNPROTECT(1);
299            error(_("Csparse_crossprod(): error return from cholmod_aat()"));
300        }
301        cholmod_band_inplace(0, chcp->ncol, chcp->xtype, chcp, &c);
302        chcp->stype = 1;
303      if (trip) cholmod_free_sparse(&chx, &c);      if (trip) cholmod_free_sparse(&chx, &c);
304      if (!tr) cholmod_free_sparse(&chxt, &c);      if (!tr) cholmod_free_sparse(&chxt, &c);
305      return chm_sparse_to_SEXP(chcp, 1);      SET_VECTOR_ELT(dn, 0,       /* establish dimnames */
306  #else                     duplicate(VECTOR_ELT(GET_SLOT(x, Matrix_DimNamesSym),
307      error("General transpose requires CHOLMOD");                                          (tr) ? 0 : 1)));
308      return R_NilValue;          /* -Wall */      SET_VECTOR_ELT(dn, 1, duplicate(VECTOR_ELT(dn, 0)));
309  #endif  /* USE_CHOLMOD */      UNPROTECT(1);
310        return chm_sparse_to_SEXP(chcp, 1, 0, 0, "", dn);
311    }
312    
313    SEXP Csparse_drop(SEXP x, SEXP tol)
314    {
315        CHM_SP chx = AS_CHM_SP(x);
316        CHM_SP ans = cholmod_copy(chx, chx->stype, chx->xtype, &c);
317        double dtol = asReal(tol);
318        int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0;
319        R_CheckStack();
320    
321        if(!cholmod_drop(dtol, ans, &c))
322            error(_("cholmod_drop() failed"));
323        return chm_sparse_to_SEXP(ans, 1, 0, Rkind, "",
324                                  GET_SLOT(x, Matrix_DimNamesSym));
325    }
326    
327    SEXP Csparse_horzcat(SEXP x, SEXP y)
328    {
329        CHM_SP chx = AS_CHM_SP(x), chy = AS_CHM_SP(y);
330        int Rkind = 0; /* only for "d" - FIXME */
331        R_CheckStack();
332    
333        /* FIXME: currently drops dimnames */
334        return chm_sparse_to_SEXP(cholmod_horzcat(chx, chy, 1, &c),
335                                  1, 0, Rkind, "", R_NilValue);
336    }
337    
338    SEXP Csparse_vertcat(SEXP x, SEXP y)
339    {
340        CHM_SP chx = AS_CHM_SP(x), chy = AS_CHM_SP(y);
341        int Rkind = 0; /* only for "d" - FIXME */
342        R_CheckStack();
343    
344        /* FIXME: currently drops dimnames */
345        return chm_sparse_to_SEXP(cholmod_vertcat(chx, chy, 1, &c),
346                                  1, 0, Rkind, "", R_NilValue);
347    }
348    
349    SEXP Csparse_band(SEXP x, SEXP k1, SEXP k2)
350    {
351        CHM_SP chx = AS_CHM_SP(x);
352        int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0;
353        CHM_SP ans = cholmod_band(chx, asInteger(k1), asInteger(k2), chx->xtype, &c);
354        R_CheckStack();
355    
356        return chm_sparse_to_SEXP(ans, 1, 0, Rkind, "",
357                                  GET_SLOT(x, Matrix_DimNamesSym));
358  }  }
359    
360    SEXP Csparse_diagU2N(SEXP x)
361    {
362        const char *cl = class_P(x);
363        /* dtCMatrix, etc; [1] = the second character =?= 't' for triangular */
364        if (cl[1] != 't' || *diag_P(x) != 'U') {
365            /* "trivially fast" when not triangular (<==> no 'diag' slot), or not *unit* triangular */
366            return (x);
367        }
368        else {
369            CHM_SP chx = AS_CHM_SP(x);
370            CHM_SP eye = cholmod_speye(chx->nrow, chx->ncol, chx->xtype, &c);
371            double one[] = {1, 0};
372            CHM_SP ans = cholmod_add(chx, eye, one, one, TRUE, TRUE, &c);
373            int uploT = (*uplo_P(x) == 'U') ? 1 : -1;
374            int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0;
375    
376            R_CheckStack();
377            cholmod_free_sparse(&eye, &c);
378            return chm_sparse_to_SEXP(ans, 1, uploT, Rkind, "N",
379                                      GET_SLOT(x, Matrix_DimNamesSym));
380        }
381    }
382    
383    SEXP Csparse_submatrix(SEXP x, SEXP i, SEXP j)
384    {
385        CHM_SP chx = AS_CHM_SP(x);
386        int rsize = (isNull(i)) ? -1 : LENGTH(i),
387            csize = (isNull(j)) ? -1 : LENGTH(j);
388        int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0;
389        R_CheckStack();
390    
391        if (rsize >= 0 && !isInteger(i))
392            error(_("Index i must be NULL or integer"));
393        if (csize >= 0 && !isInteger(j))
394            error(_("Index j must be NULL or integer"));
395    
396        return chm_sparse_to_SEXP(cholmod_submatrix(chx, INTEGER(i), rsize,
397                                                    INTEGER(j), csize,
398                                                    TRUE, TRUE, &c),
399                                  1, 0, Rkind, "",
400                                  /* FIXME: drops dimnames */ R_NilValue);
401    }
402    
403    SEXP Csparse_MatrixMarket(SEXP x, SEXP fname)
404    {
405        FILE *f = fopen(CHAR(asChar(fname)), "w");
406    
407        if (!f)
408            error(_("failure to open file \"%s\" for writing"),
409                  CHAR(asChar(fname)));
410        if (!cholmod_write_sparse(f, AS_CHM_SP(Csparse_diagU2N(x)),
411                                  (CHM_SP)NULL, (char*) NULL, &c))
412            error(_("cholmod_write_sparse returned error code"));
413        fclose(f);
414        return R_NilValue;
415    }

Legend:
Removed from v.928  
changed lines
  Added in v.2120

root@r-forge.r-project.org
ViewVC Help
Powered by ViewVC 1.0.0  
Thanks to:
Vienna University of Economics and Business Powered By FusionForge