SCM

SCM Repository

[matrix] Diff of /pkg/Matrix/src/Csparse.c
ViewVC logotype

Diff of /pkg/Matrix/src/Csparse.c

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 2125, Fri Mar 7 07:58:26 2008 UTC revision 2279, Fri Oct 3 09:15:54 2008 UTC
# Line 3  Line 3 
3  #include "Tsparse.h"  #include "Tsparse.h"
4  #include "chm_common.h"  #include "chm_common.h"
5    
6    /** "Cheap" C version of  Csparse_validate() - *not* sorting : */
7    Rboolean isValid_Csparse(SEXP x)
8    {
9        /* NB: we do *NOT* check a potential 'x' slot here, at all */
10        SEXP pslot = GET_SLOT(x, Matrix_pSym),
11            islot = GET_SLOT(x, Matrix_iSym);
12        int *dims = INTEGER(GET_SLOT(x, Matrix_DimSym)), j,
13            nrow = dims[0],
14            ncol = dims[1],
15            *xp = INTEGER(pslot),
16            *xi = INTEGER(islot);
17    
18        if (length(pslot) != dims[1] + 1)
19            return FALSE;
20        if (xp[0] != 0)
21            return FALSE;
22        if (length(islot) < xp[ncol]) /* allow larger slots from over-allocation!*/
23            return FALSE;
24        for (j = 0; j < xp[ncol]; j++) {
25            if (xi[j] < 0 || xi[j] >= nrow)
26                return FALSE;
27        }
28        for (j = 0; j < ncol; j++) {
29            if (xp[j] > xp[j + 1])
30                return FALSE;
31        }
32        return TRUE;
33    }
34    
35  SEXP Csparse_validate(SEXP x)  SEXP Csparse_validate(SEXP x)
36  {  {
37      /* NB: we do *NOT* check a potential 'x' slot here, at all */      /* NB: we do *NOT* check a potential 'x' slot here, at all */
# Line 23  Line 52 
52      if (length(islot) < xp[ncol]) /* allow larger slots from over-allocation!*/      if (length(islot) < xp[ncol]) /* allow larger slots from over-allocation!*/
53          return          return
54              mkString(_("last element of slot p must match length of slots i and x"));              mkString(_("last element of slot p must match length of slots i and x"));
55      for (j = 0; j < length(islot); j++) {      for (j = 0; j < xp[ncol]; j++) {
56          if (xi[j] < 0 || xi[j] >= nrow)          if (xi[j] < 0 || xi[j] >= nrow)
57              return mkString(_("all row indices must be between 0 and nrow-1"));              return mkString(_("all row indices must be between 0 and nrow-1"));
58      }      }
# Line 31  Line 60 
60      for (j = 0; j < ncol; j++) {      for (j = 0; j < ncol; j++) {
61          if (xp[j] > xp[j+1])          if (xp[j] > xp[j+1])
62              return mkString(_("slot p must be non-decreasing"));              return mkString(_("slot p must be non-decreasing"));
63          if(sorted)          if(sorted) /* only act if >= 2 entries in column j : */
64              for (k = xp[j] + 1; k < xp[j + 1]; k++) {              for (k = xp[j] + 1; k < xp[j + 1]; k++) {
65                  if (xi[k] < xi[k - 1])                  if (xi[k] < xi[k - 1])
66                      sorted = FALSE;                      sorted = FALSE;
# Line 40  Line 69 
69              }              }
70      }      }
71      if (!sorted) {      if (!sorted) {
72          CHM_SP chx = AS_CHM_SP(x);          CHM_SP chx = (CHM_SP) alloca(sizeof(cholmod_sparse));
73          R_CheckStack();          R_CheckStack();
74            as_cholmod_sparse(chx, x, FALSE, TRUE); /* includes cholmod_sort() ! */
75            /* as chx = AS_CHM_SP__(x)  but  ^^^^  sorting x in_place (no copying)*/
76    
         cholmod_sort(chx, &c);  
77          /* Now re-check that row indices are *strictly* increasing          /* Now re-check that row indices are *strictly* increasing
78           * (and not just increasing) within each column : */           * (and not just increasing) within each column : */
79          for (j = 0; j < ncol; j++) {          for (j = 0; j < ncol; j++) {
# Line 109  Line 139 
139   * FIXME: replace by non-CHOLMOD code ! */   * FIXME: replace by non-CHOLMOD code ! */
140  SEXP Csparse_to_dense(SEXP x)  SEXP Csparse_to_dense(SEXP x)
141  {  {
142      CHM_SP chxs = AS_CHM_SP(x);      CHM_SP chxs = AS_CHM_SP__(x);
143      /* This loses the symmetry property, since cholmod_dense has none,      /* This loses the symmetry property, since cholmod_dense has none,
144       * BUT, much worse (FIXME!), it also transforms CHOLMOD_PATTERN ("n") matrices       * BUT, much worse (FIXME!), it also transforms CHOLMOD_PATTERN ("n") matrices
145       * to numeric (CHOLMOD_REAL) ones : */       * to numeric (CHOLMOD_REAL) ones : */
# Line 122  Line 152 
152    
153  SEXP Csparse_to_nz_pattern(SEXP x, SEXP tri)  SEXP Csparse_to_nz_pattern(SEXP x, SEXP tri)
154  {  {
155      CHM_SP chxs = AS_CHM_SP(x);      CHM_SP chxs = AS_CHM_SP__(x);
156      CHM_SP chxcp = cholmod_copy(chxs, chxs->stype, CHOLMOD_PATTERN, &c);      CHM_SP chxcp = cholmod_copy(chxs, chxs->stype, CHOLMOD_PATTERN, &c);
157      int tr = asLogical(tri);      int tr = asLogical(tri);
158      R_CheckStack();      R_CheckStack();
# Line 135  Line 165 
165    
166  SEXP Csparse_to_matrix(SEXP x)  SEXP Csparse_to_matrix(SEXP x)
167  {  {
168      return chm_dense_to_matrix(cholmod_sparse_to_dense(AS_CHM_SP(x), &c),      return chm_dense_to_matrix(cholmod_sparse_to_dense(AS_CHM_SP__(x), &c),
169                                 1 /*do_free*/, GET_SLOT(x, Matrix_DimNamesSym));                                 1 /*do_free*/, GET_SLOT(x, Matrix_DimNamesSym));
170  }  }
171    
172  SEXP Csparse_to_Tsparse(SEXP x, SEXP tri)  SEXP Csparse_to_Tsparse(SEXP x, SEXP tri)
173  {  {
174      CHM_SP chxs = AS_CHM_SP(x);      CHM_SP chxs = AS_CHM_SP__(x);
175      CHM_TR chxt = cholmod_sparse_to_triplet(chxs, &c);      CHM_TR chxt = cholmod_sparse_to_triplet(chxs, &c);
176      int tr = asLogical(tri);      int tr = asLogical(tri);
177      int Rkind = (chxs->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0;      int Rkind = (chxs->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0;
# Line 156  Line 186 
186  /* this used to be called  sCMatrix_to_gCMatrix(..)   [in ./dsCMatrix.c ]: */  /* this used to be called  sCMatrix_to_gCMatrix(..)   [in ./dsCMatrix.c ]: */
187  SEXP Csparse_symmetric_to_general(SEXP x)  SEXP Csparse_symmetric_to_general(SEXP x)
188  {  {
189      CHM_SP chx = AS_CHM_SP(x), chgx;      CHM_SP chx = AS_CHM_SP__(x), chgx;
190      int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0;      int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0;
191      R_CheckStack();      R_CheckStack();
192    
# Line 170  Line 200 
200    
201  SEXP Csparse_general_to_symmetric(SEXP x, SEXP uplo)  SEXP Csparse_general_to_symmetric(SEXP x, SEXP uplo)
202  {  {
203      CHM_SP chx = AS_CHM_SP(x), chgx;      CHM_SP chx = AS_CHM_SP__(x), chgx;
204      int uploT = (*CHAR(STRING_ELT(uplo,0)) == 'U') ? 1 : -1;      int uploT = (*CHAR(STRING_ELT(uplo,0)) == 'U') ? 1 : -1;
205      int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0;      int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0;
206      R_CheckStack();      R_CheckStack();
# Line 185  Line 215 
215  {  {
216      /* TODO: lgCMatrix & igC* currently go via double prec. cholmod -      /* TODO: lgCMatrix & igC* currently go via double prec. cholmod -
217       *       since cholmod (& cs) lacks sparse 'int' matrices */       *       since cholmod (& cs) lacks sparse 'int' matrices */
218      CHM_SP chx = AS_CHM_SP(x);      CHM_SP chx = AS_CHM_SP__(x);
219      int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0;      int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0;
220      CHM_SP chxt = cholmod_transpose(chx, chx->xtype, &c);      CHM_SP chxt = cholmod_transpose(chx, chx->xtype, &c);
221      SEXP dn = PROTECT(duplicate(GET_SLOT(x, Matrix_DimNamesSym))), tmp;      SEXP dn = PROTECT(duplicate(GET_SLOT(x, Matrix_DimNamesSym))), tmp;
# Line 204  Line 234 
234  SEXP Csparse_Csparse_prod(SEXP a, SEXP b)  SEXP Csparse_Csparse_prod(SEXP a, SEXP b)
235  {  {
236      CHM_SP      CHM_SP
237          cha = AS_CHM_SP(Csparse_diagU2N(a)),          cha = AS_CHM_SP(a),
238          chb = AS_CHM_SP(Csparse_diagU2N(b)),          chb = AS_CHM_SP(b),
239          chc = cholmod_ssmult(cha, chb, /*out_stype:*/ 0,          chc = cholmod_ssmult(cha, chb, /*out_stype:*/ 0,
240                               cha->xtype, /*out sorted:*/ 1, &c);                               cha->xtype, /*out sorted:*/ 1, &c);
241      const char *cl_a = class_P(a), *cl_b = class_P(b);      const char *cl_a = class_P(a), *cl_b = class_P(b);
# Line 242  Line 272 
272  {  {
273      int tr = asLogical(trans);      int tr = asLogical(trans);
274      CHM_SP      CHM_SP
275          cha = AS_CHM_SP(Csparse_diagU2N(a)),          cha = AS_CHM_SP(a),
276          chb = AS_CHM_SP(Csparse_diagU2N(b)),          chb = AS_CHM_SP(b),
277          chTr, chc;          chTr, chc;
278      const char *cl_a = class_P(a), *cl_b = class_P(b);      const char *cl_a = class_P(a), *cl_b = class_P(b);
279      char diag[] = {'\0', '\0'};      char diag[] = {'\0', '\0'};
# Line 277  Line 307 
307    
308  SEXP Csparse_dense_prod(SEXP a, SEXP b)  SEXP Csparse_dense_prod(SEXP a, SEXP b)
309  {  {
310      CHM_SP cha = AS_CHM_SP(Csparse_diagU2N(a));      CHM_SP cha = AS_CHM_SP(a);
311      SEXP b_M = PROTECT(mMatrix_as_dgeMatrix(b));      SEXP b_M = PROTECT(mMatrix_as_dgeMatrix(b));
312      CHM_DN chb = AS_CHM_DN(b_M);      CHM_DN chb = AS_CHM_DN(b_M);
313      CHM_DN chc = cholmod_allocate_dense(cha->nrow, chb->ncol, cha->nrow,      CHM_DN chc = cholmod_allocate_dense(cha->nrow, chb->ncol, cha->nrow,
# Line 297  Line 327 
327    
328  SEXP Csparse_dense_crossprod(SEXP a, SEXP b)  SEXP Csparse_dense_crossprod(SEXP a, SEXP b)
329  {  {
330      CHM_SP cha = AS_CHM_SP(Csparse_diagU2N(a));      CHM_SP cha = AS_CHM_SP(a);
331      SEXP b_M = PROTECT(mMatrix_as_dgeMatrix(b));      SEXP b_M = PROTECT(mMatrix_as_dgeMatrix(b));
332      CHM_DN chb = AS_CHM_DN(b_M);      CHM_DN chb = AS_CHM_DN(b_M);
333      CHM_DN chc = cholmod_allocate_dense(cha->ncol, chb->ncol, cha->ncol,      CHM_DN chc = cholmod_allocate_dense(cha->ncol, chb->ncol, cha->ncol,
# Line 321  Line 351 
351  {  {
352      int trip = asLogical(triplet),      int trip = asLogical(triplet),
353          tr   = asLogical(trans); /* gets reversed because _aat is tcrossprod */          tr   = asLogical(trans); /* gets reversed because _aat is tcrossprod */
354      CHM_TR cht = trip ? AS_CHM_TR(Tsparse_diagU2N(x)) : (CHM_TR) NULL;      CHM_TR cht = trip ? AS_CHM_TR(x) : (CHM_TR) NULL;
355      CHM_SP chcp, chxt,      CHM_SP chcp, chxt,
356          chx = (trip ?          chx = (trip ?
357                 cholmod_triplet_to_sparse(cht, cht->nnz, &c) :                 cholmod_triplet_to_sparse(cht, cht->nnz, &c) :
358                 AS_CHM_SP(Csparse_diagU2N(x)));                 AS_CHM_SP(x));
359      SEXP dn = PROTECT(allocVector(VECSXP, 2));      SEXP dn = PROTECT(allocVector(VECSXP, 2));
360      R_CheckStack();      R_CheckStack();
361    
# Line 349  Line 379 
379    
380  SEXP Csparse_drop(SEXP x, SEXP tol)  SEXP Csparse_drop(SEXP x, SEXP tol)
381  {  {
382      CHM_SP chx = AS_CHM_SP(x);      const char *cl = class_P(x);
383        /* dtCMatrix, etc; [1] = the second character =?= 't' for triangular */
384        int tr = (cl[1] == 't');
385        CHM_SP chx = AS_CHM_SP__(x);
386      CHM_SP ans = cholmod_copy(chx, chx->stype, chx->xtype, &c);      CHM_SP ans = cholmod_copy(chx, chx->stype, chx->xtype, &c);
387      double dtol = asReal(tol);      double dtol = asReal(tol);
388      int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0;      int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0;
# Line 357  Line 390 
390    
391      if(!cholmod_drop(dtol, ans, &c))      if(!cholmod_drop(dtol, ans, &c))
392          error(_("cholmod_drop() failed"));          error(_("cholmod_drop() failed"));
393      return chm_sparse_to_SEXP(ans, 1, 0, Rkind, "",      return chm_sparse_to_SEXP(ans, 1,
394                                  tr ? ((*uplo_P(x) == 'U') ? 1 : -1) : 0,
395                                  Rkind, tr ? diag_P(x) : "",
396                                GET_SLOT(x, Matrix_DimNamesSym));                                GET_SLOT(x, Matrix_DimNamesSym));
397  }  }
398    
399  SEXP Csparse_horzcat(SEXP x, SEXP y)  SEXP Csparse_horzcat(SEXP x, SEXP y)
400  {  {
401      CHM_SP chx = AS_CHM_SP(x), chy = AS_CHM_SP(y);      CHM_SP chx = AS_CHM_SP__(x), chy = AS_CHM_SP__(y);
402      int Rkind = 0; /* only for "d" - FIXME */      int Rkind = 0; /* only for "d" - FIXME */
403      R_CheckStack();      R_CheckStack();
404    
# Line 374  Line 409 
409    
410  SEXP Csparse_vertcat(SEXP x, SEXP y)  SEXP Csparse_vertcat(SEXP x, SEXP y)
411  {  {
412      CHM_SP chx = AS_CHM_SP(x), chy = AS_CHM_SP(y);      CHM_SP chx = AS_CHM_SP__(x), chy = AS_CHM_SP__(y);
413      int Rkind = 0; /* only for "d" - FIXME */      int Rkind = 0; /* only for "d" - FIXME */
414      R_CheckStack();      R_CheckStack();
415    
# Line 385  Line 420 
420    
421  SEXP Csparse_band(SEXP x, SEXP k1, SEXP k2)  SEXP Csparse_band(SEXP x, SEXP k1, SEXP k2)
422  {  {
423      CHM_SP chx = AS_CHM_SP(x);      CHM_SP chx = AS_CHM_SP__(x);
424      int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0;      int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0;
425      CHM_SP ans = cholmod_band(chx, asInteger(k1), asInteger(k2), chx->xtype, &c);      CHM_SP ans = cholmod_band(chx, asInteger(k1), asInteger(k2), chx->xtype, &c);
426      R_CheckStack();      R_CheckStack();
# Line 404  Line 439 
439          return (x);          return (x);
440      }      }
441      else { /* unit triangular (diag='U'): "fill the diagonal" & diag:= "N" */      else { /* unit triangular (diag='U'): "fill the diagonal" & diag:= "N" */
442          CHM_SP chx = AS_CHM_SP(x);          CHM_SP chx = AS_CHM_SP__(x);
443          CHM_SP eye = cholmod_speye(chx->nrow, chx->ncol, chx->xtype, &c);          CHM_SP eye = cholmod_speye(chx->nrow, chx->ncol, chx->xtype, &c);
444          double one[] = {1, 0};          double one[] = {1, 0};
445          CHM_SP ans = cholmod_add(chx, eye, one, one, TRUE, TRUE, &c);          CHM_SP ans = cholmod_add(chx, eye, one, one, TRUE, TRUE, &c);
# Line 429  Line 464 
464      }      }
465      else { /* triangular with diag='N'): now drop the diagonal */      else { /* triangular with diag='N'): now drop the diagonal */
466          /* duplicate, since chx will be modified: */          /* duplicate, since chx will be modified: */
467          CHM_SP chx = AS_CHM_SP(duplicate(x));          CHM_SP chx = AS_CHM_SP__(duplicate(x));
468          int uploT = (*uplo_P(x) == 'U') ? 1 : -1,          int uploT = (*uplo_P(x) == 'U') ? 1 : -1,
469              Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0;              Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0;
470          R_CheckStack();          R_CheckStack();
# Line 444  Line 479 
479    
480  SEXP Csparse_submatrix(SEXP x, SEXP i, SEXP j)  SEXP Csparse_submatrix(SEXP x, SEXP i, SEXP j)
481  {  {
482      CHM_SP chx = AS_CHM_SP(x);      CHM_SP chx = AS_CHM_SP__(x);
483      int rsize = (isNull(i)) ? -1 : LENGTH(i),      int rsize = (isNull(i)) ? -1 : LENGTH(i),
484          csize = (isNull(j)) ? -1 : LENGTH(j);          csize = (isNull(j)) ? -1 : LENGTH(j);
485      int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0;      int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0;
# Line 469  Line 504 
504      if (!f)      if (!f)
505          error(_("failure to open file \"%s\" for writing"),          error(_("failure to open file \"%s\" for writing"),
506                CHAR(asChar(fname)));                CHAR(asChar(fname)));
507      if (!cholmod_write_sparse(f, AS_CHM_SP(Csparse_diagU2N(x)),      if (!cholmod_write_sparse(f, AS_CHM_SP(x),
508                                (CHM_SP)NULL, (char*) NULL, &c))                                (CHM_SP)NULL, (char*) NULL, &c))
509          error(_("cholmod_write_sparse returned error code"));          error(_("cholmod_write_sparse returned error code"));
510      fclose(f);      fclose(f);
511      return R_NilValue;      return R_NilValue;
512  }  }
513    
514    
515    /**
516     * Extract the diagonal entries from *triangular* Csparse matrix  __or__ a
517     * cholmod_sparse factor (LDL = TRUE).
518     *
519     * @param n  dimension of the matrix.
520     * @param x_p  'p' (column pointer) slot contents
521     * @param x_x  'x' (non-zero entries) slot contents
522     * @param perm 'perm' (= permutation vector) slot contents; only used for "diagBack"
523     * @param resultKind a (SEXP) string indicating which kind of result is desired.
524     *
525     * @return  a SEXP, either a (double) number or a length n-vector of diagonal entries
526     */
527    SEXP diag_tC_ptr(int n, int *x_p, double *x_x, int *perm, SEXP resultKind)
528    /*                                ^^^^^^ FIXME[Generalize] to int / ... */
529    {
530        const char* res_ch = CHAR(STRING_ELT(resultKind,0));
531        enum diag_kind { diag, diag_backpermuted, trace, prod, sum_log
532        } res_kind = ((!strcmp(res_ch, "trace")) ? trace :
533                      ((!strcmp(res_ch, "sumLog")) ? sum_log :
534                       ((!strcmp(res_ch, "prod")) ? prod :
535                        ((!strcmp(res_ch, "diag")) ? diag :
536                         ((!strcmp(res_ch, "diagBack")) ? diag_backpermuted :
537                          -1)))));
538        int i, n_x, i_from = 0;
539        SEXP ans = PROTECT(allocVector(REALSXP,
540    /*                                 ^^^^  FIXME[Generalize] */
541                                       (res_kind == diag ||
542                                        res_kind == diag_backpermuted) ? n : 1));
543        double *v = REAL(ans);
544    /*  ^^^^^^      ^^^^  FIXME[Generalize] */
545    
546    #define for_DIAG(v_ASSIGN)                                              \
547        for(i = 0; i < n; i++, i_from += n_x) {                             \
548            /* looking at i-th column */                                    \
549            n_x = x_p[i+1] - x_p[i];/* #{entries} in this column */ \
550            v_ASSIGN;                                                       \
551        }
552    
553        /* NOTA BENE: we assume  -- uplo = "L" i.e. lower triangular matrix
554         *            for uplo = "U" (makes sense with a "dtCMatrix" !),
555         *            should use  x_x[i_from + (nx - 1)] instead of x_x[i_from],
556         *            where nx = (x_p[i+1] - x_p[i])
557         */
558    
559        switch(res_kind) {
560        case trace:
561            v[0] = 0.;
562            for_DIAG(v[0] += x_x[i_from]);
563            break;
564    
565        case sum_log:
566            v[0] = 0.;
567            for_DIAG(v[0] += log(x_x[i_from]));
568            break;
569    
570        case prod:
571            v[0] = 1.;
572            for_DIAG(v[0] *= x_x[i_from]);
573            break;
574    
575        case diag:
576            for_DIAG(v[i] = x_x[i_from]);
577            break;
578    
579        case diag_backpermuted:
580            for_DIAG(v[i] = x_x[i_from]);
581    
582            warning(_("resultKind = 'diagBack' (back-permuted) is experimental"));
583            /* now back_permute : */
584            for(i = 0; i < n; i++) {
585                double tmp = v[i]; v[i] = v[perm[i]]; v[perm[i]] = tmp;
586                /*^^^^ FIXME[Generalize] */
587            }
588            break;
589    
590        default: /* -1 from above */
591            error("diag_tC(): invalid 'resultKind'");
592            /* Wall: */ ans = R_NilValue; v = REAL(ans);
593        }
594    
595        UNPROTECT(1);
596        return ans;
597    }
598    
599    /**
600     * Extract the diagonal entries from *triangular* Csparse matrix  __or__ a
601     * cholmod_sparse factor (LDL = TRUE).
602     *
603     * @param pslot  'p' (column pointer)   slot of Csparse matrix/factor
604     * @param xslot  'x' (non-zero entries) slot of Csparse matrix/factor
605     * @param perm_slot  'perm' (= permutation vector) slot of corresponding CHMfactor;
606     *                   only used for "diagBack"
607     * @param resultKind a (SEXP) string indicating which kind of result is desired.
608     *
609     * @return  a SEXP, either a (double) number or a length n-vector of diagonal entries
610     */
611    SEXP diag_tC(SEXP pslot, SEXP xslot, SEXP perm_slot, SEXP resultKind)
612    {
613        int n = length(pslot) - 1, /* n = ncol(.) = nrow(.) */
614            *x_p  = INTEGER(pslot),
615            *perm = INTEGER(perm_slot);
616        double *x_x = REAL(xslot);
617    /*  ^^^^^^        ^^^^ FIXME[Generalize] to INTEGER(.) / LOGICAL(.) / ... xslot !*/
618    
619        return diag_tC_ptr(n, x_p, x_x, perm, resultKind);
620    }

Legend:
Removed from v.2125  
changed lines
  Added in v.2279

root@r-forge.r-project.org
ViewVC Help
Powered by ViewVC 1.0.0  
Thanks to:
Vienna University of Economics and Business Powered By FusionForge