SCM

SCM Repository

[matrix] Diff of /pkg/Matrix/src/Csparse.c
ViewVC logotype

Diff of /pkg/Matrix/src/Csparse.c

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

pkg/src/Csparse.c revision 1360, Tue Aug 8 17:29:03 2006 UTC pkg/Matrix/src/Csparse.c revision 2628, Sat Dec 11 16:56:51 2010 UTC
# Line 1  Line 1 
1                          /* Sparse matrices in compressed column-oriented form */                          /* Sparse matrices in compressed column-oriented form */
2  #include "Csparse.h"  #include "Csparse.h"
3    #include "Tsparse.h"
4  #include "chm_common.h"  #include "chm_common.h"
5    
6  SEXP Csparse_validate(SEXP x)  /** "Cheap" C version of  Csparse_validate() - *not* sorting : */
7    Rboolean isValid_Csparse(SEXP x)
8  {  {
9        /* NB: we do *NOT* check a potential 'x' slot here, at all */
10      SEXP pslot = GET_SLOT(x, Matrix_pSym),      SEXP pslot = GET_SLOT(x, Matrix_pSym),
11          islot = GET_SLOT(x, Matrix_iSym);          islot = GET_SLOT(x, Matrix_iSym);
12      int j, ncol = length(pslot) - 1,      int *dims = INTEGER(GET_SLOT(x, Matrix_DimSym)), j,
13            nrow = dims[0],
14            ncol = dims[1],
15            *xp = INTEGER(pslot),
16            *xi = INTEGER(islot);
17    
18        if (length(pslot) != dims[1] + 1)
19            return FALSE;
20        if (xp[0] != 0)
21            return FALSE;
22        if (length(islot) < xp[ncol]) /* allow larger slots from over-allocation!*/
23            return FALSE;
24        for (j = 0; j < xp[ncol]; j++) {
25            if (xi[j] < 0 || xi[j] >= nrow)
26                return FALSE;
27        }
28        for (j = 0; j < ncol; j++) {
29            if (xp[j] > xp[j + 1])
30                return FALSE;
31        }
32        return TRUE;
33    }
34    
35    SEXP Csparse_validate(SEXP x) {
36        return Csparse_validate_(x, FALSE);
37    }
38    
39    SEXP Csparse_validate2(SEXP x, SEXP maybe_modify) {
40        return Csparse_validate_(x, asLogical(maybe_modify));
41    }
42    
43    SEXP Csparse_validate_(SEXP x, Rboolean maybe_modify)
44    {
45        /* NB: we do *NOT* check a potential 'x' slot here, at all */
46        SEXP pslot = GET_SLOT(x, Matrix_pSym),
47            islot = GET_SLOT(x, Matrix_iSym);
48        Rboolean sorted, strictly;
49        int j, k,
50          *dims = INTEGER(GET_SLOT(x, Matrix_DimSym)),          *dims = INTEGER(GET_SLOT(x, Matrix_DimSym)),
51          nrow, *xp = INTEGER(pslot),          nrow = dims[0],
52            ncol = dims[1],
53            *xp = INTEGER(pslot),
54          *xi = INTEGER(islot);          *xi = INTEGER(islot);
55    
56      nrow = dims[0];      if (length(pslot) != dims[1] + 1)
57      if (length(pslot) <= 0)          return mkString(_("slot p must have length = ncol(.) + 1"));
         return mkString(_("slot p must have length > 0"));  
58      if (xp[0] != 0)      if (xp[0] != 0)
59          return mkString(_("first element of slot p must be zero"));          return mkString(_("first element of slot p must be zero"));
60      if (length(islot) != xp[ncol])      if (length(islot) < xp[ncol]) /* allow larger slots from over-allocation!*/
61          return mkString(_("last element of slot p must match length of slots i and x"));          return
62                mkString(_("last element of slot p must match length of slots i and x"));
63        for (j = 0; j < xp[ncol]; j++) {
64            if (xi[j] < 0 || xi[j] >= nrow)
65                return mkString(_("all row indices must be between 0 and nrow-1"));
66        }
67        sorted = TRUE; strictly = TRUE;
68      for (j = 0; j < ncol; j++) {      for (j = 0; j < ncol; j++) {
69          if (xp[j] > xp[j+1])          if (xp[j] > xp[j+1])
70              return mkString(_("slot p must be non-decreasing"));              return mkString(_("slot p must be non-decreasing"));
71            if(sorted) /* only act if >= 2 entries in column j : */
72                for (k = xp[j] + 1; k < xp[j + 1]; k++) {
73                    if (xi[k] < xi[k - 1])
74                        sorted = FALSE;
75                    else if (xi[k] == xi[k - 1])
76                        strictly = FALSE;
77                }
78        }
79        if (!sorted) {
80            if(maybe_modify) {
81                CHM_SP chx = (CHM_SP) alloca(sizeof(cholmod_sparse));
82                R_CheckStack();
83                as_cholmod_sparse(chx, x, FALSE, TRUE);/*-> cholmod_l_sort() ! */
84                /* as chx = AS_CHM_SP__(x)  but  ^^^^ sorting x in_place !!! */
85    
86                /* Now re-check that row indices are *strictly* increasing
87                 * (and not just increasing) within each column : */
88                for (j = 0; j < ncol; j++) {
89                    for (k = xp[j] + 1; k < xp[j + 1]; k++)
90                        if (xi[k] == xi[k - 1])
91                            return mkString(_("slot i is not *strictly* increasing inside a column (even after cholmod_l_sort)"));
92      }      }
93      for (j = 0; j < length(islot); j++) {          } else { /* no modifying sorting : */
94          if (xi[j] < 0 || xi[j] >= nrow)              return mkString(_("row indices are not sorted within columns"));
95              return mkString(_("all row indices must be between 0 and nrow-1"));          }
96        } else if(!strictly) {  /* sorted, but not strictly */
97            return mkString(_("slot i is not *strictly* increasing inside a column"));
98      }      }
99      return ScalarLogical(1);      return ScalarLogical(1);
100  }  }
101    
102  SEXP Csparse_to_dense(SEXP x)  SEXP Rsparse_validate(SEXP x)
103  {  {
104      cholmod_sparse *chxs = as_cholmod_sparse(x);      /* NB: we do *NOT* check a potential 'x' slot here, at all */
105      cholmod_dense *chxd = cholmod_sparse_to_dense(chxs, &c);      SEXP pslot = GET_SLOT(x, Matrix_pSym),
106            jslot = GET_SLOT(x, Matrix_jSym);
107        Rboolean sorted, strictly;
108        int i, k,
109            *dims = INTEGER(GET_SLOT(x, Matrix_DimSym)),
110            nrow = dims[0],
111            ncol = dims[1],
112            *xp = INTEGER(pslot),
113            *xj = INTEGER(jslot);
114    
115      Free(chxs);      if (length(pslot) != dims[0] + 1)
116      return chm_dense_to_SEXP(chxd, 1);          return mkString(_("slot p must have length = nrow(.) + 1"));
117        if (xp[0] != 0)
118            return mkString(_("first element of slot p must be zero"));
119        if (length(jslot) < xp[nrow]) /* allow larger slots from over-allocation!*/
120            return
121                mkString(_("last element of slot p must match length of slots j and x"));
122        for (i = 0; i < length(jslot); i++) {
123            if (xj[i] < 0 || xj[i] >= ncol)
124                return mkString(_("all column indices must be between 0 and ncol-1"));
125        }
126        sorted = TRUE; strictly = TRUE;
127        for (i = 0; i < nrow; i++) {
128            if (xp[i] > xp[i+1])
129                return mkString(_("slot p must be non-decreasing"));
130            if(sorted)
131                for (k = xp[i] + 1; k < xp[i + 1]; k++) {
132                    if (xj[k] < xj[k - 1])
133                        sorted = FALSE;
134                    else if (xj[k] == xj[k - 1])
135                        strictly = FALSE;
136  }  }
137        }
138        if (!sorted)
139            /* cannot easily use cholmod_l_sort(.) ... -> "error out" :*/
140            return mkString(_("slot j is not increasing inside a column"));
141        else if(!strictly) /* sorted, but not strictly */
142            return mkString(_("slot j is not *strictly* increasing inside a column"));
143    
144  SEXP Csparse_to_Tsparse(SEXP x)      return ScalarLogical(1);
 {  
     cholmod_sparse *chxs = as_cholmod_sparse(x);  
     cholmod_triplet *chxt = cholmod_sparse_to_triplet(chxs, &c);  
   
     Free(chxs);  
     return chm_triplet_to_SEXP(chxt, 1);  
145  }  }
146    
 SEXP Csparse_transpose(SEXP x)  
 {  
     cholmod_sparse *chx = as_cholmod_sparse(x);  
     cholmod_sparse *chxt = cholmod_transpose(chx, (int) chx->xtype, &c);  
147    
148      Free(chx);  /* Called from ../R/Csparse.R : */
149      return chm_sparse_to_SEXP(chxt, 1);  /* Can only return [dln]geMatrix (no symm/triang);
150     * FIXME: replace by non-CHOLMOD code ! */
151    SEXP Csparse_to_dense(SEXP x)
152    {
153        CHM_SP chxs = AS_CHM_SP__(x);
154        /* This loses the symmetry property, since cholmod_dense has none,
155         * BUT, much worse (FIXME!), it also transforms CHOLMOD_PATTERN ("n") matrices
156         * to numeric (CHOLMOD_REAL) ones : */
157        CHM_DN chxd = cholmod_l_sparse_to_dense(chxs, &c);
158        int Rkind = (chxs->xtype == CHOLMOD_PATTERN)? -1 : Real_kind(x);
159        R_CheckStack();
160    
161        return chm_dense_to_SEXP(chxd, 1, Rkind, GET_SLOT(x, Matrix_DimNamesSym));
162    }
163    
164    // FIXME: do not go via CHM (should not be too hard, to just *drop* the x-slot, right?
165    SEXP Csparse_to_nz_pattern(SEXP x, SEXP tri)
166    {
167        CHM_SP chxs = AS_CHM_SP__(x);
168        CHM_SP chxcp = cholmod_l_copy(chxs, chxs->stype, CHOLMOD_PATTERN, &c);
169        int tr = asLogical(tri);
170        R_CheckStack();
171    
172        return chm_sparse_to_SEXP(chxcp, 1/*do_free*/,
173                                  tr ? ((*uplo_P(x) == 'U') ? 1 : -1) : 0,
174                                  0, tr ? diag_P(x) : "",
175                                  GET_SLOT(x, Matrix_DimNamesSym));
176    }
177    
178    // n.CMatrix --> [dli].CMatrix  (not going through CHM!)
179    SEXP nz_pattern_to_Csparse(SEXP x, SEXP res_kind)
180    {
181        return nz2Csparse(x, asInteger(res_kind));
182    }
183    // n.CMatrix --> [dli].CMatrix  (not going through CHM!)
184    SEXP nz2Csparse(SEXP x, enum x_slot_kind r_kind)
185    {
186        const char *cl_x = class_P(x);
187        if(cl_x[0] != 'n') error(_("not a 'n.CMatrix'"));
188        if(cl_x[2] != 'C') error(_("not a CsparseMatrix"));
189        int nnz = LENGTH(GET_SLOT(x, Matrix_iSym));
190        SEXP ans;
191        char *ncl = strdup(cl_x);
192        double *dx_x; int *ix_x;
193        ncl[0] = (r_kind == x_double ? 'd' :
194                  (r_kind == x_logical ? 'l' :
195                   /* else (for now):  r_kind == x_integer : */ 'i'));
196        PROTECT(ans = NEW_OBJECT(MAKE_CLASS(ncl)));
197        // create a correct 'x' slot:
198        switch(r_kind) {
199            int i;
200        case x_double: // 'd'
201            dx_x = REAL(ALLOC_SLOT(ans, Matrix_xSym, REALSXP, nnz));
202            for (i=0; i < nnz; i++) dx_x[i] = 1.;
203            break;
204        case x_logical: // 'l'
205            ix_x = LOGICAL(ALLOC_SLOT(ans, Matrix_xSym, LGLSXP, nnz));
206            for (i=0; i < nnz; i++) ix_x[i] = TRUE;
207            break;
208        case x_integer: // 'i'
209            ix_x = INTEGER(ALLOC_SLOT(ans, Matrix_xSym, INTSXP, nnz));
210            for (i=0; i < nnz; i++) ix_x[i] = 1;
211            break;
212    
213        default:
214            error(_("nz2Csparse(): invalid/non-implemented r_kind = %d"),
215                  r_kind);
216        }
217    
218        // now copy all other slots :
219        slot_dup(ans, x, Matrix_iSym);
220        slot_dup(ans, x, Matrix_pSym);
221        slot_dup(ans, x, Matrix_DimSym);
222        slot_dup(ans, x, Matrix_DimNamesSym);
223        if(ncl[1] != 'g') { // symmetric or triangular ...
224            slot_dup_if_has(ans, x, Matrix_uploSym);
225            slot_dup_if_has(ans, x, Matrix_diagSym);
226        }
227        UNPROTECT(1);
228        return ans;
229    }
230    
231    SEXP Csparse_to_matrix(SEXP x)
232    {
233        return chm_dense_to_matrix(cholmod_l_sparse_to_dense(AS_CHM_SP__(x), &c),
234                                   1 /*do_free*/, GET_SLOT(x, Matrix_DimNamesSym));
235    }
236    
237    SEXP Csparse_to_Tsparse(SEXP x, SEXP tri)
238    {
239        CHM_SP chxs = AS_CHM_SP__(x);
240        CHM_TR chxt = cholmod_l_sparse_to_triplet(chxs, &c);
241        int tr = asLogical(tri);
242        int Rkind = (chxs->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0;
243        R_CheckStack();
244    
245        return chm_triplet_to_SEXP(chxt, 1,
246                                   tr ? ((*uplo_P(x) == 'U') ? 1 : -1) : 0,
247                                   Rkind, tr ? diag_P(x) : "",
248                                   GET_SLOT(x, Matrix_DimNamesSym));
249    }
250    
251    /* this used to be called  sCMatrix_to_gCMatrix(..)   [in ./dsCMatrix.c ]: */
252    SEXP Csparse_symmetric_to_general(SEXP x)
253    {
254        CHM_SP chx = AS_CHM_SP__(x), chgx;
255        int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0;
256        R_CheckStack();
257    
258        if (!(chx->stype))
259            error(_("Nonsymmetric matrix in Csparse_symmetric_to_general"));
260        chgx = cholmod_l_copy(chx, /* stype: */ 0, chx->xtype, &c);
261        /* xtype: pattern, "real", complex or .. */
262        return chm_sparse_to_SEXP(chgx, 1, 0, Rkind, "",
263                                  GET_SLOT(x, Matrix_DimNamesSym));
264    }
265    
266    SEXP Csparse_general_to_symmetric(SEXP x, SEXP uplo)
267    {
268        CHM_SP chx = AS_CHM_SP__(x), chgx;
269        int uploT = (*CHAR(STRING_ELT(uplo,0)) == 'U') ? 1 : -1;
270        int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0;
271        R_CheckStack();
272    
273        chgx = cholmod_l_copy(chx, /* stype: */ uploT, chx->xtype, &c);
274        /* xtype: pattern, "real", complex or .. */
275        return chm_sparse_to_SEXP(chgx, 1, 0, Rkind, "",
276                                  GET_SLOT(x, Matrix_DimNamesSym));
277    }
278    
279    SEXP Csparse_transpose(SEXP x, SEXP tri)
280    {
281        /* TODO: lgCMatrix & igC* currently go via double prec. cholmod -
282         *       since cholmod (& cs) lacks sparse 'int' matrices */
283        CHM_SP chx = AS_CHM_SP__(x);
284        int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0;
285        CHM_SP chxt = cholmod_l_transpose(chx, chx->xtype, &c);
286        SEXP dn = PROTECT(duplicate(GET_SLOT(x, Matrix_DimNamesSym))), tmp;
287        int tr = asLogical(tri);
288        R_CheckStack();
289    
290        tmp = VECTOR_ELT(dn, 0);    /* swap the dimnames */
291        SET_VECTOR_ELT(dn, 0, VECTOR_ELT(dn, 1));
292        SET_VECTOR_ELT(dn, 1, tmp);
293        UNPROTECT(1);
294        return chm_sparse_to_SEXP(chxt, 1, /* SWAP 'uplo' for triangular */
295                                  tr ? ((*uplo_P(x) == 'U') ? -1 : 1) : 0,
296                                  Rkind, tr ? diag_P(x) : "", dn);
297  }  }
298    
299  SEXP Csparse_Csparse_prod(SEXP a, SEXP b)  SEXP Csparse_Csparse_prod(SEXP a, SEXP b)
300  {  {
301      cholmod_sparse *cha = as_cholmod_sparse(a),      CHM_SP
302          *chb = as_cholmod_sparse(b);          cha = AS_CHM_SP(a),
303      cholmod_sparse *chc = cholmod_ssmult(cha, chb, 0, cha->xtype, 1, &c);          chb = AS_CHM_SP(b),
304            chc = cholmod_l_ssmult(cha, chb, /*out_stype:*/ 0,
305      Free(cha); Free(chb);                                 /* values:= is_numeric (T/F) */ cha->xtype > 0,
306      return chm_sparse_to_SEXP(chc, 1);                                 /*out sorted:*/ 1, &c);
307        const char *cl_a = class_P(a), *cl_b = class_P(b);
308        char diag[] = {'\0', '\0'};
309        int uploT = 0;
310        SEXP dn = PROTECT(allocVector(VECSXP, 2));
311        R_CheckStack();
312    
313    #ifdef DEBUG_Matrix_verbose
314        Rprintf("DBG Csparse_C*_prod(%s, %s)\n", cl_a, cl_b);
315    #endif
316    
317        /* Preserve triangularity and even unit-triangularity if appropriate.
318         * Note that in that case, the multiplication itself should happen
319         * faster.  But there's no support for that in CHOLMOD */
320    
321        /* UGLY hack -- rather should have (fast!) C-level version of
322         *       is(a, "triangularMatrix") etc */
323        if (cl_a[1] == 't' && cl_b[1] == 't')
324            /* FIXME: fails for "Cholesky","BunchKaufmann"..*/
325            if(*uplo_P(a) == *uplo_P(b)) { /* both upper, or both lower tri. */
326                uploT = (*uplo_P(a) == 'U') ? 1 : -1;
327                if(*diag_P(a) == 'U' && *diag_P(b) == 'U') { /* return UNIT-triag. */
328                    /* "remove the diagonal entries": */
329                    chm_diagN2U(chc, uploT, /* do_realloc */ FALSE);
330                    diag[0]= 'U';
331                }
332                else diag[0]= 'N';
333            }
334        SET_VECTOR_ELT(dn, 0,       /* establish dimnames */
335                       duplicate(VECTOR_ELT(GET_SLOT(a, Matrix_DimNamesSym), 0)));
336        SET_VECTOR_ELT(dn, 1,
337                       duplicate(VECTOR_ELT(GET_SLOT(b, Matrix_DimNamesSym), 1)));
338        UNPROTECT(1);
339        return chm_sparse_to_SEXP(chc, 1, uploT, /*Rkind*/0, diag, dn);
340    }
341    
342    SEXP Csparse_Csparse_crossprod(SEXP a, SEXP b, SEXP trans)
343    {
344        int tr = asLogical(trans);
345        CHM_SP
346            cha = AS_CHM_SP(a),
347            chb = AS_CHM_SP(b),
348            chTr, chc;
349        const char *cl_a = class_P(a), *cl_b = class_P(b);
350        char diag[] = {'\0', '\0'};
351        int uploT = 0;
352        SEXP dn = PROTECT(allocVector(VECSXP, 2));
353        R_CheckStack();
354    
355        chTr = cholmod_l_transpose((tr) ? chb : cha, chb->xtype, &c);
356        chc = cholmod_l_ssmult((tr) ? cha : chTr, (tr) ? chTr : chb,
357                             /*out_stype:*/ 0, cha->xtype, /*out sorted:*/ 1, &c);
358        cholmod_l_free_sparse(&chTr, &c);
359    
360        /* Preserve triangularity and unit-triangularity if appropriate;
361         * see Csparse_Csparse_prod() for comments */
362        if (cl_a[1] == 't' && cl_b[1] == 't')
363            if(*uplo_P(a) != *uplo_P(b)) { /* one 'U', the other 'L' */
364                uploT = (*uplo_P(b) == 'U') ? 1 : -1;
365                if(*diag_P(a) == 'U' && *diag_P(b) == 'U') { /* return UNIT-triag. */
366                    chm_diagN2U(chc, uploT, /* do_realloc */ FALSE);
367                    diag[0]= 'U';
368                }
369                else diag[0]= 'N';
370            }
371        SET_VECTOR_ELT(dn, 0,       /* establish dimnames */
372                       duplicate(VECTOR_ELT(GET_SLOT(a, Matrix_DimNamesSym), (tr) ? 0 : 1)));
373        SET_VECTOR_ELT(dn, 1,
374                       duplicate(VECTOR_ELT(GET_SLOT(b, Matrix_DimNamesSym), (tr) ? 0 : 1)));
375        UNPROTECT(1);
376        return chm_sparse_to_SEXP(chc, 1, uploT, /*Rkind*/0, diag, dn);
377  }  }
378    
379  SEXP Csparse_dense_prod(SEXP a, SEXP b)  SEXP Csparse_dense_prod(SEXP a, SEXP b)
380  {  {
381      cholmod_sparse *cha = as_cholmod_sparse(a);      CHM_SP cha = AS_CHM_SP(a);
382      cholmod_dense *chb = as_cholmod_dense(b);      SEXP b_M = PROTECT(mMatrix_as_dgeMatrix(b));
383      cholmod_dense *chc = cholmod_allocate_dense(cha->nrow, chb->ncol,      CHM_DN chb = AS_CHM_DN(b_M);
384                                                  cha->nrow, chb->xtype, &c);      CHM_DN chc = cholmod_l_allocate_dense(cha->nrow, chb->ncol, cha->nrow,
385      double alpha = 1, beta = 0;                                          chb->xtype, &c);
386        SEXP dn = PROTECT(allocVector(VECSXP, 2));
387      cholmod_sdmult(cha, 0, &alpha, &beta, chb, chc, &c);      double one[] = {1,0}, zero[] = {0,0};
388      Free(cha); Free(chb);      int nprot = 2;
389      return chm_dense_to_SEXP(chc, 1);      R_CheckStack();
390        /* Tim Davis, please FIXME:  currently (2010-11) *fails* when  a  is a pattern matrix:*/
391        if(cha->xtype == CHOLMOD_PATTERN) {
392            /* warning(_("Csparse_dense_prod(): cholmod_sdmult() not yet implemented for pattern./ ngCMatrix" */
393            /*        " --> slightly inefficient coercion")); */
394    
395            // This *fails* to produce a CHOLMOD_REAL ..
396            // CHM_SP chd = cholmod_l_copy(cha, cha->stype, CHOLMOD_REAL, &c);
397            // --> use our Matrix-classes
398            SEXP da = PROTECT(nz2Csparse(a, x_double)); nprot++;
399            cha = AS_CHM_SP(da);
400        }
401        cholmod_l_sdmult(cha, 0, one, zero, chb, chc, &c);
402        SET_VECTOR_ELT(dn, 0,       /* establish dimnames */
403                       duplicate(VECTOR_ELT(GET_SLOT(a, Matrix_DimNamesSym), 0)));
404        SET_VECTOR_ELT(dn, 1,
405                       duplicate(VECTOR_ELT(GET_SLOT(b_M, Matrix_DimNamesSym), 1)));
406        UNPROTECT(nprot);
407        return chm_dense_to_SEXP(chc, 1, 0, dn);
408  }  }
409    
410  SEXP Csparse_dense_crossprod(SEXP a, SEXP b)  SEXP Csparse_dense_crossprod(SEXP a, SEXP b)
411  {  {
412      cholmod_sparse *cha = as_cholmod_sparse(a);      CHM_SP cha = AS_CHM_SP(a);
413      cholmod_dense *chb = as_cholmod_dense(b);      SEXP b_M = PROTECT(mMatrix_as_dgeMatrix(b));
414      cholmod_dense *chc = cholmod_allocate_dense(cha->ncol, chb->ncol,      CHM_DN chb = AS_CHM_DN(b_M);
415                                                  cha->ncol, chb->xtype, &c);      CHM_DN chc = cholmod_l_allocate_dense(cha->ncol, chb->ncol, cha->ncol,
416      double alpha = 1, beta = 0;                                          chb->xtype, &c);
417        SEXP dn = PROTECT(allocVector(VECSXP, 2));
418      cholmod_sdmult(cha, 1, &alpha, &beta, chb, chc, &c);      double one[] = {1,0}, zero[] = {0,0};
419      Free(cha); Free(chb);      R_CheckStack();
420      return chm_dense_to_SEXP(chc, 1);  
421        cholmod_l_sdmult(cha, 1, one, zero, chb, chc, &c);
422        SET_VECTOR_ELT(dn, 0,       /* establish dimnames */
423                       duplicate(VECTOR_ELT(GET_SLOT(a, Matrix_DimNamesSym), 1)));
424        SET_VECTOR_ELT(dn, 1,
425                       duplicate(VECTOR_ELT(GET_SLOT(b_M, Matrix_DimNamesSym), 1)));
426        UNPROTECT(2);
427        return chm_dense_to_SEXP(chc, 1, 0, dn);
428  }  }
429    
430    /* Computes   x'x  or  x x' -- *also* for Tsparse (triplet = TRUE)
431       see Csparse_Csparse_crossprod above for  x'y and x y' */
432  SEXP Csparse_crossprod(SEXP x, SEXP trans, SEXP triplet)  SEXP Csparse_crossprod(SEXP x, SEXP trans, SEXP triplet)
433  {  {
434      int trip = asLogical(triplet),      int trip = asLogical(triplet),
435          tr   = asLogical(trans); /* gets reversed because _aat is tcrossprod */          tr   = asLogical(trans); /* gets reversed because _aat is tcrossprod */
436      cholmod_triplet  #ifdef AS_CHM_DIAGU2N_FIXED_FINALLY
437          *cht = trip ? as_cholmod_triplet(x) : (cholmod_triplet*) NULL;      CHM_TR cht = trip ? AS_CHM_TR(x) : (CHM_TR) NULL;
438      cholmod_sparse *chcp, *chxt,  #else /* workaround needed:*/
439          *chx = trip ? cholmod_triplet_to_sparse(cht, cht->nnz, &c)      SEXP xx = PROTECT(Tsparse_diagU2N(x));
440          : as_cholmod_sparse(x);      CHM_TR cht = trip ? AS_CHM_TR__(xx) : (CHM_TR) NULL;
441    #endif
442      if (!tr)      CHM_SP chcp, chxt,
443          chxt = cholmod_transpose(chx, chx->xtype, &c);          chx = (trip ?
444      chcp = cholmod_aat((!tr) ? chxt : chx, (int *) NULL, 0, chx->xtype, &c);                 cholmod_l_triplet_to_sparse(cht, cht->nnz, &c) :
445      if(!chcp)                 AS_CHM_SP(x));
446          error("Csparse_crossprod(): error return from cholmod_aat()");      SEXP dn = PROTECT(allocVector(VECSXP, 2));
447      cholmod_band_inplace(0, chcp->ncol, chcp->xtype, chcp, &c);      R_CheckStack();
448      chcp->stype = 1;  
449      if (trip) {      if (!tr) chxt = cholmod_l_transpose(chx, chx->xtype, &c);
450          cholmod_free_sparse(&chx, &c);      chcp = cholmod_l_aat((!tr) ? chxt : chx, (int *) NULL, 0, chx->xtype, &c);
451          Free(cht);      if(!chcp) {
452      } else {          UNPROTECT(1);
453          Free(chx);          error(_("Csparse_crossprod(): error return from cholmod_l_aat()"));
454      }      }
455      if (!tr) cholmod_free_sparse(&chxt, &c);      cholmod_l_band_inplace(0, chcp->ncol, chcp->xtype, chcp, &c);
456      return chm_sparse_to_SEXP(chcp, 1);      chcp->stype = 1;
457        if (trip) cholmod_l_free_sparse(&chx, &c);
458        if (!tr) cholmod_l_free_sparse(&chxt, &c);
459        SET_VECTOR_ELT(dn, 0,       /* establish dimnames */
460                       duplicate(VECTOR_ELT(GET_SLOT(x, Matrix_DimNamesSym),
461                                            (tr) ? 0 : 1)));
462        SET_VECTOR_ELT(dn, 1, duplicate(VECTOR_ELT(dn, 0)));
463    #ifdef AS_CHM_DIAGU2N_FIXED_FINALLY
464        UNPROTECT(1);
465    #else
466        UNPROTECT(2);
467    #endif
468        return chm_sparse_to_SEXP(chcp, 1, 0, 0, "", dn);
469    }
470    
471    SEXP Csparse_drop(SEXP x, SEXP tol)
472    {
473        const char *cl = class_P(x);
474        /* dtCMatrix, etc; [1] = the second character =?= 't' for triangular */
475        int tr = (cl[1] == 't');
476        CHM_SP chx = AS_CHM_SP__(x);
477        CHM_SP ans = cholmod_l_copy(chx, chx->stype, chx->xtype, &c);
478        double dtol = asReal(tol);
479        int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0;
480        R_CheckStack();
481    
482        if(!cholmod_l_drop(dtol, ans, &c))
483            error(_("cholmod_l_drop() failed"));
484        return chm_sparse_to_SEXP(ans, 1,
485                                  tr ? ((*uplo_P(x) == 'U') ? 1 : -1) : 0,
486                                  Rkind, tr ? diag_P(x) : "",
487                                  GET_SLOT(x, Matrix_DimNamesSym));
488  }  }
489    
490  SEXP Csparse_horzcat(SEXP x, SEXP y)  SEXP Csparse_horzcat(SEXP x, SEXP y)
491  {  {
492      cholmod_sparse *chx = as_cholmod_sparse(x),      CHM_SP chx = AS_CHM_SP__(x), chy = AS_CHM_SP__(y);
493          *chy = as_cholmod_sparse(y), *ans;      int Rk_x = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0,
494            Rk_y = (chy->xtype != CHOLMOD_PATTERN) ? Real_kind(y) : 0,
495      ans = cholmod_horzcat(chx, chy, 1, &c);          Rkind = /* logical if both x and y are */ (Rk_x == 1 && Rk_y == 1) ? 1 : 0;
496      Free(chx); Free(chy);      R_CheckStack();
497      return chm_sparse_to_SEXP(ans, 1);  
498        /* TODO: currently drops dimnames - and we fix at R level */
499        return chm_sparse_to_SEXP(cholmod_l_horzcat(chx, chy, 1, &c),
500                                  1, 0, Rkind, "", R_NilValue);
501  }  }
502    
503  SEXP Csparse_vertcat(SEXP x, SEXP y)  SEXP Csparse_vertcat(SEXP x, SEXP y)
504  {  {
505      cholmod_sparse *chx = as_cholmod_sparse(x),      CHM_SP chx = AS_CHM_SP__(x), chy = AS_CHM_SP__(y);
506          *chy = as_cholmod_sparse(y), *ans;      int Rk_x = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0,
507            Rk_y = (chy->xtype != CHOLMOD_PATTERN) ? Real_kind(y) : 0,
508      ans = cholmod_vertcat(chx, chy, 1, &c);          Rkind = /* logical if both x and y are */ (Rk_x == 1 && Rk_y == 1) ? 1 : 0;
509      Free(chx); Free(chy);      R_CheckStack();
510      return chm_sparse_to_SEXP(ans, 1);  
511        /* TODO: currently drops dimnames - and we fix at R level */
512        return chm_sparse_to_SEXP(cholmod_l_vertcat(chx, chy, 1, &c),
513                                  1, 0, Rkind, "", R_NilValue);
514  }  }
515    
516  SEXP Csparse_band(SEXP x, SEXP k1, SEXP k2)  SEXP Csparse_band(SEXP x, SEXP k1, SEXP k2)
517  {  {
518      cholmod_sparse *chx = as_cholmod_sparse(x), *ans;      CHM_SP chx = AS_CHM_SP__(x);
519        int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0;
520      ans = cholmod_band(chx, asInteger(k1), asInteger(k2), chx->xtype, &c);      CHM_SP ans = cholmod_l_band(chx, asInteger(k1), asInteger(k2), chx->xtype, &c);
521      Free(chx);      R_CheckStack();
522      return chm_sparse_to_SEXP(ans, 1);  
523        return chm_sparse_to_SEXP(ans, 1, 0, Rkind, "",
524                                  GET_SLOT(x, Matrix_DimNamesSym));
525    }
526    
527    SEXP Csparse_diagU2N(SEXP x)
528    {
529        const char *cl = class_P(x);
530        /* dtCMatrix, etc; [1] = the second character =?= 't' for triangular */
531        if (cl[1] != 't' || *diag_P(x) != 'U') {
532            /* "trivially fast" when not triangular (<==> no 'diag' slot),
533               or not *unit* triangular */
534            return (x);
535        }
536        else { /* unit triangular (diag='U'): "fill the diagonal" & diag:= "N" */
537            CHM_SP chx = AS_CHM_SP__(x);
538            CHM_SP eye = cholmod_l_speye(chx->nrow, chx->ncol, chx->xtype, &c);
539            double one[] = {1, 0};
540            CHM_SP ans = cholmod_l_add(chx, eye, one, one, TRUE, TRUE, &c);
541            int uploT = (*uplo_P(x) == 'U') ? 1 : -1;
542            int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0;
543    
544            R_CheckStack();
545            cholmod_l_free_sparse(&eye, &c);
546            return chm_sparse_to_SEXP(ans, 1, uploT, Rkind, "N",
547                                      GET_SLOT(x, Matrix_DimNamesSym));
548        }
549    }
550    
551    SEXP Csparse_diagN2U(SEXP x)
552    {
553        const char *cl = class_P(x);
554        /* dtCMatrix, etc; [1] = the second character =?= 't' for triangular */
555        if (cl[1] != 't' || *diag_P(x) != 'N') {
556            /* "trivially fast" when not triangular (<==> no 'diag' slot),
557               or already *unit* triangular */
558            return (x);
559        }
560        else { /* triangular with diag='N'): now drop the diagonal */
561            /* duplicate, since chx will be modified: */
562            CHM_SP chx = AS_CHM_SP__(duplicate(x));
563            int uploT = (*uplo_P(x) == 'U') ? 1 : -1,
564                Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0;
565            R_CheckStack();
566    
567            chm_diagN2U(chx, uploT, /* do_realloc */ FALSE);
568    
569            return chm_sparse_to_SEXP(chx, /*dofree*/ 0/* or 1 ?? */,
570                                      uploT, Rkind, "U",
571                                      GET_SLOT(x, Matrix_DimNamesSym));
572        }
573    }
574    
575    /**
576     * "Indexing" aka subsetting : Compute  x[i,j], also for vectors i and j
577     * Working via CHOLMOD_submatrix, see ./CHOLMOD/MatrixOps/cholmod_submatrix.c
578     * @param x CsparseMatrix
579     * @param i row     indices (0-origin), or NULL (R's)
580     * @param j columns indices (0-origin), or NULL
581     *
582     * @return x[i,j]  still CsparseMatrix --- currently, this loses dimnames
583     */
584    SEXP Csparse_submatrix(SEXP x, SEXP i, SEXP j)
585    {
586        CHM_SP chx = AS_CHM_SP(x); /* << does diagU2N() when needed */
587        int rsize = (isNull(i)) ? -1 : LENGTH(i),
588            csize = (isNull(j)) ? -1 : LENGTH(j);
589        int Rkind = (chx->xtype != CHOLMOD_PATTERN) ? Real_kind(x) : 0;
590        R_CheckStack();
591    
592        if (rsize >= 0 && !isInteger(i))
593            error(_("Index i must be NULL or integer"));
594        if (csize >= 0 && !isInteger(j))
595            error(_("Index j must be NULL or integer"));
596    
597        if (chx->stype) /* symmetricMatrix */
598            /* for now, cholmod_submatrix() only accepts "generalMatrix" */
599            chx = cholmod_l_copy(chx, /* stype: */ 0, chx->xtype, &c);
600    
601        return chm_sparse_to_SEXP(cholmod_l_submatrix(chx,
602                                    (rsize < 0) ? NULL : INTEGER(i), rsize,
603                                    (csize < 0) ? NULL : INTEGER(j), csize,
604                                                      TRUE, TRUE, &c),
605                                  1, 0, Rkind, "",
606                                  /* FIXME: drops dimnames */ R_NilValue);
607    }
608    
609    SEXP Csparse_MatrixMarket(SEXP x, SEXP fname)
610    {
611        FILE *f = fopen(CHAR(asChar(fname)), "w");
612    
613        if (!f)
614            error(_("failure to open file \"%s\" for writing"),
615                  CHAR(asChar(fname)));
616        if (!cholmod_l_write_sparse(f, AS_CHM_SP(x),
617                                  (CHM_SP)NULL, (char*) NULL, &c))
618            error(_("cholmod_l_write_sparse returned error code"));
619        fclose(f);
620        return R_NilValue;
621    }
622    
623    
624    /**
625     * Extract the diagonal entries from *triangular* Csparse matrix  __or__ a
626     * cholmod_sparse factor (LDL = TRUE).
627     *
628     * @param n  dimension of the matrix.
629     * @param x_p  'p' (column pointer) slot contents
630     * @param x_x  'x' (non-zero entries) slot contents
631     * @param perm 'perm' (= permutation vector) slot contents; only used for "diagBack"
632     * @param resultKind a (SEXP) string indicating which kind of result is desired.
633     *
634     * @return  a SEXP, either a (double) number or a length n-vector of diagonal entries
635     */
636    SEXP diag_tC_ptr(int n, int *x_p, double *x_x, int *perm, SEXP resultKind)
637    /*                                ^^^^^^ FIXME[Generalize] to int / ... */
638    {
639        const char* res_ch = CHAR(STRING_ELT(resultKind,0));
640        enum diag_kind { diag, diag_backpermuted, trace, prod, sum_log
641        } res_kind = ((!strcmp(res_ch, "trace")) ? trace :
642                      ((!strcmp(res_ch, "sumLog")) ? sum_log :
643                       ((!strcmp(res_ch, "prod")) ? prod :
644                        ((!strcmp(res_ch, "diag")) ? diag :
645                         ((!strcmp(res_ch, "diagBack")) ? diag_backpermuted :
646                          -1)))));
647        int i, n_x, i_from = 0;
648        SEXP ans = PROTECT(allocVector(REALSXP,
649    /*                                 ^^^^  FIXME[Generalize] */
650                                       (res_kind == diag ||
651                                        res_kind == diag_backpermuted) ? n : 1));
652        double *v = REAL(ans);
653    /*  ^^^^^^      ^^^^  FIXME[Generalize] */
654    
655    #define for_DIAG(v_ASSIGN)                                              \
656        for(i = 0; i < n; i++, i_from += n_x) {                             \
657            /* looking at i-th column */                                    \
658            n_x = x_p[i+1] - x_p[i];/* #{entries} in this column */ \
659            v_ASSIGN;                                                       \
660        }
661    
662        /* NOTA BENE: we assume  -- uplo = "L" i.e. lower triangular matrix
663         *            for uplo = "U" (makes sense with a "dtCMatrix" !),
664         *            should use  x_x[i_from + (nx - 1)] instead of x_x[i_from],
665         *            where nx = (x_p[i+1] - x_p[i])
666         */
667    
668        switch(res_kind) {
669        case trace:
670            v[0] = 0.;
671            for_DIAG(v[0] += x_x[i_from]);
672            break;
673    
674        case sum_log:
675            v[0] = 0.;
676            for_DIAG(v[0] += log(x_x[i_from]));
677            break;
678    
679        case prod:
680            v[0] = 1.;
681            for_DIAG(v[0] *= x_x[i_from]);
682            break;
683    
684        case diag:
685            for_DIAG(v[i] = x_x[i_from]);
686            break;
687    
688        case diag_backpermuted:
689            for_DIAG(v[i] = x_x[i_from]);
690    
691            warning(_("resultKind = 'diagBack' (back-permuted) is experimental"));
692            /* now back_permute : */
693            for(i = 0; i < n; i++) {
694                double tmp = v[i]; v[i] = v[perm[i]]; v[perm[i]] = tmp;
695                /*^^^^ FIXME[Generalize] */
696            }
697            break;
698    
699        default: /* -1 from above */
700            error(_("diag_tC(): invalid 'resultKind'"));
701            /* Wall: */ ans = R_NilValue; v = REAL(ans);
702        }
703    
704        UNPROTECT(1);
705        return ans;
706    }
707    
708    /**
709     * Extract the diagonal entries from *triangular* Csparse matrix  __or__ a
710     * cholmod_sparse factor (LDL = TRUE).
711     *
712     * @param pslot  'p' (column pointer)   slot of Csparse matrix/factor
713     * @param xslot  'x' (non-zero entries) slot of Csparse matrix/factor
714     * @param perm_slot  'perm' (= permutation vector) slot of corresponding CHMfactor;
715     *                   only used for "diagBack"
716     * @param resultKind a (SEXP) string indicating which kind of result is desired.
717     *
718     * @return  a SEXP, either a (double) number or a length n-vector of diagonal entries
719     */
720    SEXP diag_tC(SEXP pslot, SEXP xslot, SEXP perm_slot, SEXP resultKind)
721    {
722        int n = length(pslot) - 1, /* n = ncol(.) = nrow(.) */
723            *x_p  = INTEGER(pslot),
724            *perm = INTEGER(perm_slot);
725        double *x_x = REAL(xslot);
726    /*  ^^^^^^        ^^^^ FIXME[Generalize] to INTEGER(.) / LOGICAL(.) / ... xslot !*/
727    
728        return diag_tC_ptr(n, x_p, x_x, perm, resultKind);
729    }
730    
731    /**
732     * Create a Csparse matrix object from indices and/or pointers.
733     *
734     * @param cls name of actual class of object to create
735     * @param i optional integer vector of length nnz of row indices
736     * @param j optional integer vector of length nnz of column indices
737     * @param p optional integer vector of length np of row or column pointers
738     * @param np length of integer vector p.  Must be zero if p == (int*)NULL
739     * @param x optional vector of values
740     * @param nnz length of vectors i, j and/or x, whichever is to be used
741     * @param dims optional integer vector of length 2 to be used as
742     *     dimensions.  If dims == (int*)NULL then the maximum row and column
743     *     index are used as the dimensions.
744     * @param dimnames optional list of length 2 to be used as dimnames
745     * @param index1 indicator of 1-based indices
746     *
747     * @return an SEXP of class cls inheriting from CsparseMatrix.
748     */
749    SEXP create_Csparse(char* cls, int* i, int* j, int* p, int np,
750                        void* x, int nnz, int* dims, SEXP dimnames,
751                        int index1)
752    {
753        SEXP ans;
754        int *ij = (int*)NULL, *tri, *trj,
755            mi, mj, mp, nrow = -1, ncol = -1;
756        int xtype = -1;             /* -Wall */
757        CHM_TR T;
758        CHM_SP A;
759    
760        if (np < 0 || nnz < 0)
761            error(_("negative vector lengths not allowed: np = %d, nnz = %d"),
762                  np, nnz);
763        if (1 != ((mi = (i == (int*)NULL)) +
764                  (mj = (j == (int*)NULL)) +
765                  (mp = (p == (int*)NULL))))
766            error(_("exactly 1 of 'i', 'j' or 'p' must be NULL"));
767        if (mp) {
768            if (np) error(_("np = %d, must be zero when p is NULL"), np);
769        } else {
770            if (np) {               /* Expand p to form i or j */
771                if (!(p[0])) error(_("p[0] = %d, should be zero"), p[0]);
772                for (int ii = 0; ii < np; ii++)
773                    if (p[ii] > p[ii + 1])
774                        error(_("p must be non-decreasing"));
775                if (p[np] != nnz)
776                    error("p[np] = %d != nnz = %d", p[np], nnz);
777                ij = Calloc(nnz, int);
778                if (mi) {
779                    i = ij;
780                    nrow = np;
781                } else {
782                    j = ij;
783                    ncol = np;
784                }
785                                    /* Expand p to 0-based indices */
786                for (int ii = 0; ii < np; ii++)
787                    for (int jj = p[ii]; jj < p[ii + 1]; jj++) ij[jj] = ii;
788            } else {
789                if (nnz)
790                    error(_("Inconsistent dimensions: np = 0 and nnz = %d"),
791                          nnz);
792            }
793        }
794                                    /* calculate nrow and ncol */
795        if (nrow < 0) {
796            for (int ii = 0; ii < nnz; ii++) {
797                int i1 = i[ii] + (index1 ? 0 : 1); /* 1-based index */
798                if (i1 < 1) error(_("invalid row index at position %d"), ii);
799                if (i1 > nrow) nrow = i1;
800            }
801        }
802        if (ncol < 0) {
803            for (int jj = 0; jj < nnz; jj++) {
804                int j1 = j[jj] + (index1 ? 0 : 1);
805                if (j1 < 1) error(_("invalid column index at position %d"), jj);
806                if (j1 > ncol) ncol = j1;
807            }
808        }
809        if (dims != (int*)NULL) {
810            if (dims[0] > nrow) nrow = dims[0];
811            if (dims[1] > ncol) ncol = dims[1];
812        }
813                                    /* check the class name */
814        if (strlen(cls) != 8)
815            error(_("strlen of cls argument = %d, should be 8"), strlen(cls));
816        if (!strcmp(cls + 2, "CMatrix"))
817            error(_("cls = \"%s\" does not end in \"CMatrix\""), cls);
818        switch(cls[0]) {
819        case 'd':
820        case 'l':
821               xtype = CHOLMOD_REAL;
822               break;
823        case 'n':
824               xtype = CHOLMOD_PATTERN;
825               break;
826        default:
827               error(_("cls = \"%s\" must begin with 'd', 'l' or 'n'"), cls);
828        }
829        if (cls[1] != 'g')
830            error(_("Only 'g'eneral sparse matrix types allowed"));
831                                    /* allocate and populate the triplet */
832        T = cholmod_l_allocate_triplet((size_t)nrow, (size_t)ncol, (size_t)nnz, 0,
833                                        xtype, &c);
834        T->x = x;
835        tri = (int*)T->i;
836        trj = (int*)T->j;
837        for (int ii = 0; ii < nnz; ii++) {
838            tri[ii] = i[ii] - ((!mi && index1) ? 1 : 0);
839            trj[ii] = j[ii] - ((!mj && index1) ? 1 : 0);
840        }
841                                    /* create the cholmod_sparse structure */
842        A = cholmod_l_triplet_to_sparse(T, nnz, &c);
843        cholmod_l_free_triplet(&T, &c);
844                                    /* copy the information to the SEXP */
845        ans = PROTECT(NEW_OBJECT(MAKE_CLASS(cls)));
846    /* FIXME: This has been copied from chm_sparse_to_SEXP in chm_common.c */
847                                    /* allocate and copy common slots */
848        nnz = cholmod_l_nnz(A, &c);
849        dims = INTEGER(ALLOC_SLOT(ans, Matrix_DimSym, INTSXP, 2));
850        dims[0] = A->nrow; dims[1] = A->ncol;
851        Memcpy(INTEGER(ALLOC_SLOT(ans, Matrix_pSym, INTSXP, A->ncol + 1)), (int*)A->p, A->ncol + 1);
852        Memcpy(INTEGER(ALLOC_SLOT(ans, Matrix_iSym, INTSXP, nnz)), (int*)A->i, nnz);
853        switch(cls[1]) {
854        case 'd':
855            Memcpy(REAL(ALLOC_SLOT(ans, Matrix_xSym, REALSXP, nnz)), (double*)A->x, nnz);
856            break;
857        case 'l':
858            error(_("code not yet written for cls = \"lgCMatrix\""));
859        }
860        cholmod_l_free_sparse(&A, &c);
861        UNPROTECT(1);
862        return ans;
863  }  }

Legend:
Removed from v.1360  
changed lines
  Added in v.2628

root@r-forge.r-project.org
ViewVC Help
Powered by ViewVC 1.0.0  
Thanks to:
Vienna University of Economics and Business University of Wisconsin - Madison Powered By FusionForge