Introduction to pair trading
-Based on cointegration-

▪ Shinichi Takayanagi
▪ Kohta Ishikawa
1. What is pair trading?
2. What is cointegration?
3. Idea of pair trading based on cointegration
4. Simulation by R language
5. Summary & concluding remarks
1. What is pair trading?
Pair trading was pioneered by …

- Gerry Bamberger and Nunzio Tartaglia
- Quantitative group at Morgan Stanley
- Around 1980s
- D.E. Shaw & Co. is famous for this strategy
Pair trading is ...

Market neutral trading strategy
Pair trading belongs to …

Statistical Arbitrage

Physics, Information theory
PCA, ICA, Autoregression
Neural Net
Pattern Recognition
Basic idea of pair trading ...

Select two stocks which move **similarly**
Basic idea of pair trading ...

Sell high priced stock

Buy low priced stock
Basic idea of pair trading ...

Stock A: ------
Stock B: ------

Sell Stock B
Sell Stock A
Buy Stock A
Buy Stock B
Basic idea of pair trading ...

Usually, monitor the difference between two stock prices
Basic idea of pair trading ...

the difference between two stock prices

Sell Stock A

Buy Stock B

Sell Stock B

Buy Stock A
2. What is cointegration?
Cointegration is ...

• Pioneered by Engle and Granger
• Statistical property of time series
• Around 1990s
Cointegration is …

Not correlation
Cointegration and correlation

• **Correlation**
 – Specify co-movement of return
 – **Short term** relationship

• **Cointegration**
 – Specify co-movement of price
 – **Long term** relationship
(weak) Stationary time series

Not depend on time

\[E(X_t) = \mu \]

\[\text{var}(X_t) = \sigma^2 \]

\[\text{cov}(X_t, X_{t-s}) = \gamma(s) \]
Example of stationary time series

White noise

• $E(\varepsilon_t) = 0$

• $\text{var}(\varepsilon_t) = \sigma^2$

• $\text{cov}(\varepsilon_t, \varepsilon_s) = 0, t \neq s$
Non stationary time series

Depend on time

\[
\begin{align*}
E(X_t) &= \mu_t \\
\text{var}(X_t) &= \sigma_t^2 \\
\text{cov}(X_t, X_{t-s}) &= \gamma(t,s)
\end{align*}
\]
Example of non stationary time series

Brownian motion

- $E(W_t) = 0$
- $\text{var}(W_t) = t$
- $\text{cov}(W_t, W_{t-s}) = t - s$
\begin{itemize}
 \item \(L X_t = X_{t-1} \)
 \item \((1 - L)X_t = X_t - X_{t-1} = \Delta X_t \)
\end{itemize}
Integrated of order P

$X_t : \text{non stationary}$

$(1 - L)^p X_t : \text{stationary}$

$X_t \sim \text{I}(p)$
Example of “integrate”

\[Z_t = Z_{t-1} + \varepsilon_t : \text{Random walk} \]

\[\varepsilon_t : \text{White noise} \]

\[\Delta Z_t = Z_t - Z_{t-1} = \varepsilon_t : \text{Stationary} \]

\[\therefore Z_t \sim I(1) \]
X_t and Y_t are cointegrated if ...

$$u_t = Y_t - (\alpha + \beta X_t)$$

$u_t : \sim I(0)$, stationary process

$X_t, Y_t : \sim I(1)$

This is a special version of general cointegration for I(1)
Example of cointegrated time series

\[Y_t = 50 + 0.5X_t + u_t \]

\[X_t : 100 + 2 \times \text{Normal brownian motion} \]

\[u_t : 3 \times \text{Gaussian noise} \]
Example of cointegrated time series

Plot: $u_t = Y_t - 0.5 X_t$
ut seems to be...

Stationary & Mean reversion
Can we apply this idea to trading strategy?
3. Idea of pair trading based on cointegration
Geometric brownian motion

The most widely used model of stock price

\[\frac{dS_t}{S_t} = \mu dt + \sigma dW_t \]

- \(S_t \): Stock price
- \(\mu \): Average return
- \(\sigma \): Volatility
- \(W_t \): Brownian motion
From Ito’s lemma

\[d \log(S_t) = \left(\mu - \frac{\sigma^2}{2} \right) dt + \sigma dW_t \]

Log price follow Brownian motion
Brownian motion (log price) is ...

$\Delta(1)$

* Random walk can be considered as discretization of Brownian motion
Then, we can apply

Cointegration idea
to log stock price
Log price spread(*) is...

Stationary & Mean reversion

\[
\text{Spread}_t := \log(Y_t) - (\alpha + \beta \log(X_t)), \quad X_t, Y_t : \text{stock price}
\]
Simple trading idea

if $Spread_t > \text{very high}$: Buy X_t, Sell Y_t
if $Spread_t < \text{very low}$: Buy Y_t, Sell X_t

$$Spread_t = \log(Y_t) - (\alpha + \beta \log(X_t))$$

$X_t, Y_t : \text{stock price}$
4. Simulation by R language
Process

1. Find two likely cointegrated stocks
2. Estimate spreads
3. Check stationarity
4. Create trading signal
5. Run back-test
1. Find two likely cointegrated stocks

```r
> library(PairTrading)
> # load sample stock price data
> data(stock.price)
> # select 2 stocks
> price.pair <- stock.price[,1:2]["2008-12-31::"]
> head(price.pair)

    7201 7203
2009-01-05  333 3010
2009-01-06  341 3050
2009-01-07  374 3200
2009-01-08  361 3140
```

* Just load sample data in this case....
2. Estimate spreads

```r
> reg <- EstimateParameters(price.pair, method = lm)
> str(reg)
List of 3
$ spread  :An ‘xts’ object from 2008-12-30 to 2011-08-05 containing:
  Data: num [1:635, 1] -0.08544 -0.0539 -0.04306 -0.00426 -0.01966 ...
- attr(*, "dimnames")=List of 2
  ..$: NULL
  ..$ : chr "B"
Indexed by objects of class: [Date] TZ:
xts Attributes:
NULL
$ hedge.ratio: num 0.0997
$ premium   : num 7.48
```
2. Estimate spreads

\[\text{Spread}_t = \log(Y_t) - (\alpha + \beta \log(X_t)), \quad X_t, Y_t : \text{stock price} \]
3. Check stationarity

```r
> PP.test(as.numeric(reg$spread))

Phillips-Perron Unit Root Test
data: as.numeric(reg$spread)
Dickey-Fuller = -3.2299, Truncation lag parameter = 6, p-value = 0.08278

> adf.test(as.numeric(reg$spread))

Augmented Dickey-Fuller Test
data: as.numeric(reg$spread)
Dickey-Fuller = -3.6462, Lag order = 8, p-value = 0.02825
alternative hypothesis: stationary
```
4. Create trading signal

```r
> params <- EstimateParametersHistorically(price.pair, period = 180)

> signal <- Simple(params$spread, 0.05)

> barplot(signal, col = "blue", space = 0, border = "blue", xaxt = "n", yaxt = "n", xlab = "", ylab = "")

> par(new = TRUE)

> plot(params$spread, type = "l", col = "red", lwd = 3, main = "Spread & Signal")
```
4. Create trading signal
> return.pairtrading <- Return(price.pair, lag(signal),
lag(params$hedge.ratio))

> plot(100 * cumprod(1 +
return.pairtrading), main =
"Performance of pair trading")
5. Run back-test

Performance of pair trading
5. Summary & concluding remarks
Summary & concluding remarks

• Pair trading is simple quantitative trading strategy
• Cointegration is long term relationship of time series
• Idea of cointegration may give a chance to make a profit from financial market by pair trading

• Next step
 – Sophisticate parameter estimation & trading rule
 – Make a simulation close to real
• Pairs trade(http://en.wikipedia.org/wiki/Pairs_trade)
• Cointegration(http://en.wikipedia.org/wiki/Cointegration)
• Andrew Neil Burgess, “A Computational Methodology for Modeling the Dynamics of Statistical Arbitrage”
• Russell Wojcik, “Pairs Trading: A Professional Approach”
• Daniel Herlemont, “Pairs trading, convergence trading, cointegration”
• Ganapathy Vidyamurthy, “Pairs Trading: Quantitative Methods and Analysis “