Introduction to pair trading
-Based on cointegration-

• Shinichi Takayanagi
 • Kohta Ishikawa
1. What is pair trading?
2. What is cointegration?
3. Idea of pair trading based on cointegration
4. Simulation by R language
5. Summary & concluding remarks
1. What is pair trading?
Pair trading was pioneered by …

- Gerry Bamberger and Nunzio Tartaglia
- Quantitative group at Morgan Stanley
- Around 1980s
- D.E. Shaw & Co. is famous for this strategy
Pair trading is ...

Market neutral trading strategy
Pair trading belongs to ...

Statistical Arbitrage

Physics, Information theory

PCA, ICA, Autoregression

Pattern Recognition
Basic idea of pair trading ...

Select two stocks which move **similarly**
Basic idea of pair trading ...

Sell high priced stock

Buy low priced stock
Basic idea of pair trading ...

Stock A: ------
Stock B: ------
Basic idea of pair trading ...

Usually, monitor the difference between two stock prices
Basic idea of pair trading...

the difference between two stock prices

Sell Stock A

Buy Stock B

Sell Stock B

Buy Stock A
2. What is cointegration?
Cointegration is ...

- Pioneered by Engle and Granger
- Statistical property of time series
- Around 1990s
Cointegration is not correlation.
Cointegration and correlation

• **Correlation**
 – Specify co-movement of *return*
 – **Short term** relationship

• **Cointegration**
 – Specify co-movement of *price*
 – **Long term** relationship
(weak) Stationary time series

Not depend on time

- \(E(X_t) = \mu \)
- \(\text{var}(X_t) = \sigma^2 \)
- \(\text{cov}(X_t, X_{t-s}) = \gamma(s) \)
White noise

- $E(\varepsilon_t) = 0$
- $\text{var}(\varepsilon_t) = \sigma^2$
- $\text{cov}(\varepsilon_t, \varepsilon_s) = 0, t \neq s$
Non stationary time series

Depend on time

- \(E(X_t) = \mu_t \)
- \(\text{var}(X_t) = \sigma_t^2 \)
- \(\text{cov}(X_t, X_{t-s}) = \gamma(t, s) \)
Brownian motion

- \(E(W_t) = 0\)
- \(\text{var}(W_t) = t\)
- \(\text{cov}(W_t, W_{t-s}) = t - s\)
\begin{itemize}
 \item \(LX_t = X_{t-1} \)
 \item \((1 - L)X_t = X_t - X_{t-1} = \Delta X_t \)
\end{itemize}
Integrated of order P

$X_t : \text{non stationary}$

$\left(1 - L\right)^p X_t : \text{stationary}$

$X_t \sim I(p)$
Example of “integrate”

\[Z_t = Z_{t-1} + \varepsilon_t : \text{Random walk} \]

\[\varepsilon_t : \text{White noise} \]

Calculate difference

\[\Delta Z_t = Z_t - Z_{t-1} = \varepsilon_t : \text{Stationary} \]

\[\therefore Z_t \sim I(1) \]
X_t and Y_t are cointegrated if ...

$$u_t = Y_t - (\alpha + \beta X_t)$$

$u_t \sim I(0)$, stationary process

$X_t, Y_t \sim I(1)$

This is a special version of general cointegration for I(1)
Example of cointegrated time series

\[Y_t = 50 + 0.5X_t + u_t \]
\[X_t : 100 + 2 \times \text{Normal brownian motion} \]
\[u_t : 3 \times \text{Gaussian noise} \]
Example of cointegrated time series

Plot: \(ut = Yt - 0.5 \times Xt \)
ut seems to be...

Stationary & Mean reversion
Can we apply this idea to trading strategy?
3. Idea of pair trading based on cointegration
Geometric brownian motion

The most widely used model of stock price

\[
\frac{dS_t}{S_t} = \mu dt + \sigma dW_t
\]

- \(S_t \): Stock price
- \(\mu \): Average return
- \(\sigma \): Volatility
- \(W_t \): Brownian motion
From Ito’s lemma

\[d \log(S_t) = \left(\mu - \frac{\sigma^2}{2} \right) dt + \sigma dW_t \]

Log price follow Brownian motion
Brownian motion (log price) is ...

\[I(1) \]

* Random walk can be considered as discretization of Brownian motion
Then, we can apply

Cointegration idea
to log stock price
Log price spread(*) is...

Stationary & Mean reversion

\[\text{Spread}_t := \log(Y_t) - (\alpha + \beta \log(X_t)), \quad X_t, Y_t : \text{stock price} \]
Simple trading idea

if $Spread_t >$ very hish : Buy X_t, Sell Y_t
if $Spread_t <$ very low : Buy Y_t, Sell X_t

$$Spread_t = \log(Y_t) - (\alpha + \beta \log(X_t))$$

$X_t, Y_t :$ stock price
4. Simulation by R language
1. Find two likely cointegrated stocks
2. Estimate spreads
3. Check stationarity
4. Create trading signal
5. Run back-test
1. Find two likely cointegrated stocks

> library(PairTrading)
> #load sample stock price data
> data(stock.price)
> #select 2 stocks
> price.pair <- stock.price[,1:2]["2008-12-31::"]
> head(price.pair)

 7201 7203
2009-01-05 333 3010
2009-01-06 341 3050
2009-01-07 374 3200
2009-01-08 361 3140

* Just load sample data in this case....
2. Estimate spreads

> reg <- `EstimateParameters`(price.pair, method = lm)
> str(reg)
List of 3
$ spread :An ‘xts’ object from 2008-12-30 to 2011-08-05 containing:
 Data: num [1:635, 1] -0.08544 -0.0539 -0.04306 -0.00426 -0.01966 ...
- attr(*, "dimnames")=List of 2
 ..$: NULL
 ..$: chr "B"
Indexed by objects of class: [Date] TZ:
xts Attributes:
NULL
$ hedge.ratio: num 0.0997
$ premium : num 7.48
2. Estimate spreads

> plot(reg$spread, main = "Spread")

\[Spread_t = \log(Y_t) - (\alpha + \beta \log(X_t)), \quad X_t, Y_t \text{ : stock price} \]
3. Check stationarity

> PP.test(as.numeric(reg$spread))

Phillips-Perron Unit Root Test
data: as.numeric(reg$spread)
Dickey-Fuller = -3.2299, Truncation lag parameter = 6, p-value = 0.08278

> adf.test(as.numeric(reg$spread))

Augmented Dickey-Fuller Test
data: as.numeric(reg$spread)
Dickey-Fuller = -3.6462, Lag order = 8, p-value = 0.02825
alternative hypothesis: stationary
4. Create trading signal

```r
> params <- 
   EstimateParametersHistorically(price.pair, period = 180)
> signal <- Simple(params$spread, 0.05)
> barplot(signal, col="blue", space = 0, border = "blue", xaxt="n", yaxt="n", xlab="", ylab="")
> par(new=TRUE)
> plot(params$spread, type="l", col = "red", lwd = 3, main = "Spread & Signal")
```
4. Create trading signal
5. Run back-test

> return.pairtrading <- Return(price.pair, lag(signal),
lag(params$hedge.ratio))

> plot(100 * cumprod(1 + return.pairtrading), main =
"Performance of pair trading")
5. Run back-test

Performance of pair trading
5. Summary & concluding remarks
• Pair trading is simple quantitative trading strategy
• Cointegration is long term relation ship of time series
• Idea of cointegration may give a chance to make a profit from financial market by pair trading

• Next step
 – Sophisticate parameter estimation & trading rule
 – Make a simulation close to real
Reference

• Pairs trade(http://en.wikipedia.org/wiki/Pairs_trade)
• Cointegration(http://en.wikipedia.org/wiki/Cointegration)
• Andrew Neil Burgess, “A Computational Methodology for Modeling the Dynamics of Statistical Arbitrage”
• Russell Wojcik, “Pairs Trading: A Professional Approach”
• Daniel Herlemont, “Pairs trading, convergence trading, cointegration”
• Ganapathy Vidyamurthy, “Pairs Trading: Quantitative Methods and Analysis”