# SCM Repository

[inlinedocs] View of /pkg/inlinedocs/inst/testfiles/fermatExAttrEmpty.R
 [inlinedocs] / pkg / inlinedocs / inst / testfiles / fermatExAttrEmpty.R

# View of /pkg/inlinedocs/inst/testfiles/fermatExAttrEmpty.R

Tue Oct 1 07:15:26 2013 UTC (5 years, 8 months ago) by tomaschwutz
File size: 4543 byte(s)
`fixed error in parsing examples with (yet) empty lines`
```fermat.test <- function#Test an integer for primality with Fermat's little theorem.
### Fermat's little theorem states that if \eqn{n} is a prime number
### and \eqn{a} is any positive integer less than \eqn{n}, then
### \eqn{a} raised to the \eqn{n}th power is congruent to \eqn{a\
### modulo\ n}{a modulo n}.
##references<< \url{http://en.wikipedia.org/wiki/Fermat's_little_theorem}
(n ##<< the integer to test for primality.
){
a <- floor(runif(1,min=1,max=n))
##note<< \code{fermat.test} doesn't work for integers above
##approximately 15 because modulus loses precision.
a^n %% n == a
### Whether the integer passes the Fermat test for a randomized
### \eqn{0<a<n}
}
is.pseudoprime <- structure(function
### A number is pseudo-prime if it is probably prime, the basis of
### which is the probabalistic Fermat test; if it passes two such
### tests, the chances are better than 3 out of 4 that \eqn{n} is
### prime.
##references<< Abelson, Hal; Jerry Sussman, and Julie
##Sussman. Structure and Interpretation of Computer
##Programs. Cambridge: MIT Press, 1984.
(n, ##<< the integer to test for pseudoprimality.
times ##<< the number of Fermat tests to perform
){
if(times==0)TRUE
else if(fermat.test(n)) is.pseudoprime(n,times-1)
else FALSE
### Whether the number is pseudoprime.
},ex=function(){
})

#.dontcheck <- TRUE
#save.test.result("inst/testfiles/fermatExAttrEmpty.R")
#test.file("inst/testfiles/fermatExAttrEmpty.R")

.result <-
list(fermat.test = list(definition = "fermat.test <- function#Test an integer for primality with Fermat's little theorem.\n### Fermat's little theorem states that if \\eqn{n} is a prime number\n### and \\eqn{a} is any positive integer less than \\eqn{n}, then\n### \\eqn{a} raised to the \\eqn{n}th power is congruent to \\eqn{a\\\n### modulo\\ n}{a modulo n}.\n##references<< \\url{http://en.wikipedia.org/wiki/Fermat's_little_theorem}\n(n ##<< the integer to test for primality.\n ){\n  a <- floor(runif(1,min=1,max=n))\n  ##note<< \\code{fermat.test} doesn't work for integers above\n  ##approximately 15 because modulus loses precision.\n  a^n %% n == a\n### Whether the integer passes the Fermat test for a randomized\n### \\eqn{0<a<n}\n}",
description = "Fermat's little theorem states that if \\eqn{n} is a prime number\nand \\eqn{a} is any positive integer less than \\eqn{n}, then\n\\eqn{a} raised to the \\eqn{n}th power is congruent to \\eqn{a\\\nmodulo\\ n}{a modulo n}.",
value = "Whether the integer passes the Fermat test for a randomized\n\\eqn{0<a<n}",
references = "\\url{http://en.wikipedia.org/wiki/Fermat's_little_theorem}",
`item{n}` = "the integer to test for primality.", note = "\\code{fermat.test} doesn't work for integers above\napproximately 15 because modulus loses precision.",
title = "Test an integer for primality with Fermat's little theorem.",
format = ""), is.pseudoprime = list(definition = "is.pseudoprime <- structure(function\n### A number is pseudo-prime if it is probably prime, the basis of\n### which is the probabalistic Fermat test; if it passes two such\n### tests, the chances are better than 3 out of 4 that \\eqn{n} is\n### prime.\n##references<< Abelson, Hal; Jerry Sussman, and Julie\n##Sussman. Structure and Interpretation of Computer\n##Programs. Cambridge: MIT Press, 1984.\n(n, ##<< the integer to test for pseudoprimality.\n times ##<< the number of Fermat tests to perform\n){\n  if(times==0)TRUE\n  ##seealso<< \\code{\\link{fermat.test}}\n  else if(fermat.test(n)) is.pseudoprime(n,times-1)\n  else FALSE\n### Whether the number is pseudoprime.\n},ex=function(){\n})",
description = "A number is pseudo-prime if it is probably prime, the basis of\nwhich is the probabalistic Fermat test; if it passes two such\ntests, the chances are better than 3 out of 4 that \\eqn{n} is\nprime.",
value = "Whether the number is pseudoprime.", references = "Abelson, Hal; Jerry Sussman, and Julie\nSussman. Structure and Interpretation of Computer\nPrograms. Cambridge: MIT Press, 1984.",
`item{n}` = "the integer to test for pseudoprimality.", `item{times}` = "the number of Fermat tests to perform",
seealso = "\\code{\\link{fermat.test}}", format = "", title = "is pseudoprime",
examples = "\n"))

```